Graduate Algebra Homework 3

Due 2015-02-11

1. Consider the complex

$$\cdots \to \mathbb{Z}/4\mathbb{Z} \xrightarrow{\times 2} \mathbb{Z}/4\mathbb{Z} \xrightarrow{\times 2} \mathbb{Z}/4\mathbb{Z} \to \cdots$$

- (a) Show that the complex is exact.
- (b) Show that the identity map on the complex is not null-homotopic.
- 2. Let R be a ring. Let $\mathbb{Z}[Mod_R]$ be the free abelian group generated by R-modules; denote by [M] the generator corresponding to $M \in Mod_R$. Let G(R) be the quotient of $\mathbb{Z}[Mod_R]$ by the subgroup generated by [M] [M'] [M''] for any three R-modules in an exact sequence $0 \to M' \to M \to M'' \to 0$.
 - (a) If $M \cong N$ are two *R*-modules show that [M] = [N] in G(R).
 - (b) Show that if $0 \to M_1 \to M_2 \to \cdots \to M_k \to 0$ is a complex of *R*-modules then

$$\sum_{i=1}^{k} (-1)^{i} [M_{i}] = \sum_{i=1}^{k} (-1)^{i} [H^{i}(M^{\bullet})]$$

In particular if the complex M^{\bullet} is exact then

$$\sum_{i=1}^{k} (-1)^{i} [M_{i}] = 0$$

in G(R).

- (c) A function $\phi : \operatorname{Mod}_R \to A$ (where A is an abelian group) is said to be additive if $\phi(M) = \phi(M') + \phi(M'')$ for exact sequences $0 \to M' \to M \to M'' \to 0$. Show that ϕ extends to a homomorphism of abelian groups $\phi : G(R) \to A$.
- 3. Let R be a ring. Let $\mathbb{Z}[\operatorname{Proj}_R]$ be the free abelian group generated by isomorphism classes of finitely generated projective R-modules and let $K_0(R)$ be the quotient by the subgroup generated by $[P \oplus Q] [P] [Q]$ for any finitely generated projectives P and Q. (Recall from last semester that a short exact sequence where the third term is projective splits as a direct sum.)
 - (a) Show that $[P] \cdot [Q] = [P \otimes_R Q]$ extends to a ring multiplication on the abelian group $K_0(R)$ endowing $K_0(R)$ with the structure of an abelian ring.
 - (b) Show that K_0 yields a functor from Rings to Rings.
 - (c) Show that $K_0(R) \cong \mathbb{Z}$ for any PID R.

The ring $K_0(R)$ is the easiest example of algebraic K-theory.

4. Let R be a ring. Consider the following commutative diagram of R-module homomorphisms with exact rows:

Show that there exists an exact sequence

$$0 \rightarrow \ker a \rightarrow \ker b \rightarrow \ker c \rightarrow \operatorname{coker} a \rightarrow \operatorname{coker} b \rightarrow \operatorname{coker} c \rightarrow 0$$

This is known as the snake lemma.

- 5. (a) Let \mathcal{C} be the category of local Noetherian commutative rings R such that $R/\mathfrak{m}_R \cong \mathbb{Q}$ and morphisms $f: R \to S$ such that $f(\mathfrak{m}_R) = \mathfrak{m}_S$. Let V be an n-dimensional rational vector space and $T \in \operatorname{End}_{\mathbb{Q}}(V)$. By a *deformation* of (V,T) to $R \in \operatorname{Ob}(\mathcal{C})$ we mean a free R-module V_R of rank n and $T_R \in \operatorname{End}_R(V_R)$ such that $(V_R, T_R) \otimes_R (R/\mathfrak{m}_R, 1) \cong (V, T)$. Show that sending $R \in \operatorname{Ob}(\mathcal{C})$ to the set of deformations of (V,T) to R yields a functor $D: \mathcal{C} \to \operatorname{Sets}$.
 - (b) Let $\phi : R \to S$ be a homomorphism of commutative rings giving S the structure of an R-algebra. Let M be an S-module. Let $\text{Der}_R(S, M)$ be the set of R-module homomorphisms $d : S \to M$ such that d(xy) = d(x)y + xd(y) for all $x, y \in S$. Show that $\text{Der}_R(S, -)$ gives a covariant functor from S-modules to R-modules.