Graduate Algebra Homework 3

Due 2015-02-11

1. Consider the complex

$$
\cdots \rightarrow \mathbb{Z} / 4 \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} / 4 \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} / 4 \mathbb{Z} \rightarrow \cdots
$$

(a) Show that the complex is exact.
(b) Show that the identity map on the complex is not null-homotopic.

Proof. (a): This is trivial.
(b): Suppose id is null homotopic. Then for each position $i, \mathrm{id}_{i}=d_{i} \circ s_{i+1}+s_{i} \circ d_{i-1}$ for maps of R-modules $s_{i}:(\mathbb{Z} / 4 \mathbb{Z})_{i} \rightarrow(\mathbb{Z} / 4 \mathbb{Z})_{i-1}$. Then for any $x \in(\mathbb{Z} / 4 \mathbb{Z})_{i}$ we have $x=d_{i-1} s_{i}(x)+s_{i+1} d_{i}(x)=$ $2 s_{i}(x)+s_{i+1}(2 x)$ and the RHS is always even. Taking $x=1$ yields a contradiction.
2. Let R be a ring. Let $\mathbb{Z}\left[\operatorname{Mod}_{R}\right]$ be the free abelian group generated by R-modules; denote by $[M]$ the generator corresponding to $M \in \operatorname{Mod}_{R}$. Let $G(R)$ be the quotient of $\mathbb{Z}\left[\operatorname{Mod}_{R}\right]$ by the subgroup generated by $[M]-\left[M^{\prime}\right]-\left[M^{\prime \prime}\right]$ for any three R-modules in an exact sequence $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$.
(a) If $M \cong N$ are two R-modules show that $[M]=[N]$ in $G(R)$.
(b) Show that if $0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow \cdots \rightarrow M_{k} \rightarrow 0$ is a complex of R-modules then

$$
\sum_{i=1}^{k}(-1)^{i}\left[M_{i}\right]=\sum_{i=1}^{k}(-1)^{i}\left[H^{i}\left(M^{\bullet}\right)\right]
$$

In particular if the complex M^{\bullet} is exact then

$$
\sum_{i=1}^{k}(-1)^{i}\left[M_{i}\right]=0
$$

in $G(R)$.
(c) A function $\phi: \operatorname{Mod}_{R} \rightarrow A$ (where A is an abelian group) is said to be additive if $\phi(M)=$ $\phi\left(M^{\prime}\right)+\phi\left(M^{\prime \prime}\right)$ for exact sequences $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$. Show that ϕ extends to a homomorphism of abelian groups $\phi: G(R) \rightarrow A$.

Proof. (a): Taking the exact sequuence $0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0$ we deduce that [0] $=0$. Then $0 \rightarrow 0 \rightarrow$ $M \rightarrow N \rightarrow 0$ yields $[M]=[N]$.
(b): Consider $d_{i}: M_{i} \rightarrow M_{i+1}$ giving the exact sequence $0 \rightarrow \operatorname{ker} d_{i} \rightarrow M_{i} \rightarrow \operatorname{Im} d_{i} \rightarrow 0$. Then $\left[M_{i}\right]=\left[\operatorname{ker} d_{i}\right]+\left[\operatorname{Im} d_{i}\right]$. We compute

$$
\begin{aligned}
\sum(-1)^{i}\left[M_{i}\right] & =\sum(-1)^{i}\left(\left[\operatorname{ker} d_{i}\right]+\left[\operatorname{Im} d_{i}\right]\right) \\
& =\sum(-1)^{i}\left(\left[\operatorname{ker} d_{i}\right]-\left[\operatorname{Im} d_{i-1}\right]\right) \\
& =\sum(-1)^{i}\left[\operatorname{ker} d_{i} / \operatorname{Im} d_{i-1}\right] \\
& =\sum(-1)^{i}\left[H^{i}\left(M^{\bullet}\right)\right]
\end{aligned}
$$

If M^{\bullet} is exact then all $H^{i}\left(M^{\bullet}\right)=0$ and since $[0]=0$ we deduce that $\sum_{i=1}^{k}(-1)^{i}\left[M_{i}\right]=0$.
(c): Define $\phi\left(\sum a_{i}\left[M_{i}\right]\right):=\sum a_{i} \phi\left(M_{i}\right)$ yielding a homomorphism of abelian groups $\mathbb{Z}\left[\operatorname{Mod}_{R}\right] \rightarrow A$. Since ϕ is additive it follows that ϕ vanishes on all generators of the submodule by which we quotient $\mathbb{Z}\left[\operatorname{Mod}_{R}\right]$ to define $G(R)$. The first isomorphism theorem for groups then shows that ϕ factors through the quotient $G(R) \rightarrow A$.
3. Let R be a ring. Let $\mathbb{Z}\left[\operatorname{Proj}_{R}\right]$ be the free abelian group generated by isomorphism classes of finitely generated projective R-modules and let $K_{0}(R)$ be the quotient by the subgroup generated by $[P \oplus Q]-$ $[P]-[Q]$ for any finitely generated projectives P and Q. (Recall from last semester that a short exact sequence where the third term is projective splits as a direct sum.)
(a) Show that $[P] \cdot[Q]=\left[P \otimes_{R} Q\right]$ gives a well-defined ring multiplication on the abelian group $K_{0}(R)$ endowing $K_{0}(R)$ with the structure of an abelian ring.
(b) Show that K_{0} yields a functor from Rings to Rings.
(c) Show that $K_{0}(R) \cong \mathbb{Z}$ for any PID R.

The ring $K_{0}(R)$ is the easiest example of algebraic K-theory.

Proof. (a): To make sense of this as a ring multiplication we first need to show that if P and Q are finitely generated projective then so is $P \otimes_{R} Q$. The latter is certainly finitely generated so we only need to show that it is projective. Let M and N be such that $P \oplus M=F$ and $Q \oplus N=F^{\prime}$ are free. Then $F \otimes_{R} F^{\prime}$ is free and $F \otimes_{R} F^{\prime}=P \otimes_{R} Q \oplus\left(P \otimes_{R} N \oplus M \otimes_{R} Q \oplus M \otimes_{R} N\right)$. Thus $P \otimes_{R} Q$ is a direct summand of a free module and so it is projective.
Define multiplication on $\mathbb{Z}\left[\operatorname{Proj}_{R}\right]$ by $\left(\sum a_{i}\left[M_{i}\right]\right) \cdot\left(\sum b_{j}\left[N_{j}\right]\right)=\sum a_{i} b_{j}\left[M_{i} \otimes_{R} N_{j}\right]$. Then $\mathbb{Z}\left[\operatorname{Proj}_{R}\right]$ is a ring with unit $[R]$. Let I be the subgroup of $\mathbb{Z}\left[\operatorname{Proj}_{R}\right]$ generated by $[P \oplus Q]-[P]-[Q]$. To show that $K_{0}(R)$ is a ring it suffices to show that I is in fact an ideal of $\mathbb{Z}\left[\operatorname{Proj}_{R}\right]$. For this note that $([P \oplus Q]-[P]-[Q]) \cdot[S]=\left[P \otimes_{R} S \oplus Q \otimes_{R} S\right]-\left[P \otimes_{R} S\right]-\left[Q \otimes_{R} S\right]$ and so $I \cdot \mathbb{Z}\left[\operatorname{Proj}_{R}\right]=I$ as desired. Thus $K_{0}(R)=\mathbb{Z}\left[\operatorname{Proj}_{R}\right] / I$ is a ring, being the quotient of a ring by an ideal. It is also commutative because $P \otimes_{R} Q \cong Q \otimes_{R} P$.
(b): Suppose $f: R \rightarrow S$ is a ring homomorphism. If P is a projective R module then $P \otimes_{R} S$ is a projective S module: indeed, if $P \oplus M=F$ then $P \otimes_{R} S \oplus M \otimes_{R} S=F \otimes_{R} S$ which is free. Consider $\sum a_{i}\left[P_{i}\right] \mapsto \sum a_{i}\left[P_{i} \otimes_{R} S\right]$. This is easily seen to be a ring homomorphism $\mathbb{Z}\left[\operatorname{Proj}_{R}\right] \rightarrow \mathbb{Z}\left[\operatorname{Proj}_{S}\right]$. Since $-\otimes_{R} S$ takes direct sums to direct sums it follows that we get a well-defined ring homomorphism $K_{0}(R) \rightarrow K_{0}(S)$. We conclude easily now that K_{0} is a functor.
(c): Recall from last semester that every finitely generated projective module over a PID is free. Thus $P \cong R^{n}$ and so $\mathbb{Z}\left[\operatorname{Proj}_{R}\right]=\mathbb{Z}\left[R^{n} \mid n \geq 0\right]$. Moreover, $\left[R^{n}\right]=[R \oplus \cdots \oplus R]=n[R]$ in $K_{0}(R)$ and so $K_{0}(R)=\mathbb{Z} \cdot[R]$ as desired.
4. Let R be a ring. Consider the following commutative diagram of R-module homomorphisms with exact rows:

Show that there exists an exact sequence

$$
0 \rightarrow \operatorname{ker} a \rightarrow \operatorname{ker} b \rightarrow \operatorname{ker} c \rightarrow \operatorname{coker} a \rightarrow \operatorname{coker} b \rightarrow \operatorname{coker} c \rightarrow 0
$$

This is known as the snake lemma.

Proof. Consider the columns as complexes A^{\bullet}, B^{\bullet} and C^{\bullet}. Then the hypothesis is that the sequence $0 \rightarrow A^{\bullet} \rightarrow B^{\bullet} \rightarrow C^{\bullet} \rightarrow 0$ is an exact sequence of complexes. The long exact sequence for cohomology of complexes yields $H^{-1}\left(C^{\bullet}\right) \rightarrow H^{0}\left(A^{\bullet}\right) \rightarrow H^{0}\left(B^{\bullet}\right) \rightarrow H^{0}\left(C^{\bullet}\right) \rightarrow H^{1}\left(A^{\bullet}\right) \rightarrow H^{1}\left(B^{\bullet}\right) \rightarrow H^{1}\left(C^{\bullet}\right) \rightarrow$ $H^{2}\left(A^{\bullet}\right)$. Then Example 54 from the lecture notes yields the snake lemma.
5. (a) Let \mathcal{C} be the category of local Noetherian commutative rings R such that $R / \mathfrak{m}_{R} \cong \mathbb{Q}$ and morphisms $f: R \rightarrow S$ such that $f\left(\mathfrak{m}_{R}\right)=\mathfrak{m}_{S}$. Let V be an n-dimensional rational vector space and $T \in \operatorname{End}_{\mathbb{Q}}(V)$. By a deformation of (V, T) to $R \in \mathrm{Ob}(\mathcal{C})$ we mean a free R-module V_{R} of rank n and $T_{R} \in \operatorname{End}_{R}\left(V_{R}\right)$ such that $\left(V_{R}, T_{R}\right) \otimes_{R}\left(R / \mathfrak{m}_{R}, 1\right) \cong(V, T)$. Show that sending $R \in \operatorname{Ob}(\mathcal{C})$ to the set of deformations of (V, T) to R yields a functor $D: \mathcal{C} \rightarrow$ Sets.
(b) Let $\phi: R \rightarrow S$ be a homomorphism of commutative rings giving S the structure of an R-algebra. Let M be an S-module. Let $\operatorname{Der}_{R}(S, M)$ be the set of R-module homomorphisms $d: S \rightarrow M$ such that $d(x y)=d(x) y+x d(y)$ for all $x, y \in S$. Show that $\operatorname{Der}_{R}(S,-)$ gives a covariant functor from S-modules to R-modules.

Proof. (a): Clearly D sends rings to sets so we need only construct D of morphisms \mathcal{C}. Suppose $f: R \rightarrow$ S is a morphism in \mathcal{C}. For each deformation $\left(V_{R}, T_{R}\right) \in D(R)$ define $\left(V_{S}, T_{S}\right)=\left(V_{R}, T_{R}\right) \otimes_{R}\left(S, \mathrm{id}_{S}\right)$ where S is an R-module via f. We only need to show that $\left(V_{S}, T_{S}\right) \in D(S)$ because then $D(R)$ maps to $D(S)$ via $\otimes_{R}\left(S\right.$, id $\left._{S}\right)$ and thus D is a functor. First, if $V_{R} \cong R^{n}$ then $V_{S} \cong S^{n}$. Next, we need to check that $\left(V_{S}, T_{S}\right) \otimes_{S}\left(S / \mathfrak{m}_{S}, \mathrm{id}\right) \cong(V, T)$. But

$$
\begin{aligned}
\left(V_{S}, T_{S}\right) \otimes_{S}\left(S / \mathfrak{m}_{S}, \mathrm{id}\right) & \cong\left(V_{S} \otimes_{S}\left(S / \mathfrak{m}_{S}\right), T_{S} \otimes \mathrm{id}\right) \\
& =\left(\left(V_{R} \otimes_{R} S\right) \otimes\left(S / \mathfrak{m}_{S}\right),\left(T_{R} \otimes \mathrm{id}\right) \otimes \mathrm{id}\right. \\
& \cong\left(V_{R} \otimes_{R}\left(S \otimes_{S} S / \mathfrak{m}_{S}\right), T_{R} \otimes(\mathrm{id} \otimes \mathrm{id})\right) \\
& \cong\left(V_{R} \otimes_{R} S / \mathfrak{m}_{S}, T_{R} \otimes \mathrm{id}\right) \\
& \cong\left(V_{R} \otimes R / \mathfrak{m}_{R}, T_{R} \otimes \mathrm{id}\right) \\
& \cong(V, T)
\end{aligned}
$$

where we used in row 3 that if N is a bi- (A, B)-module then $\left(M \otimes_{A} N\right) \otimes_{B} P \cong M \otimes_{A}\left(N \otimes_{B} P\right)$ and in row 5 the fact that f induced the unique isomorphism $R / \mathfrak{m}_{R} \cong \mathbb{Q} \cong S / \mathfrak{m}_{S}$. (Here we used that \mathbb{Q} as a ring has a unique isomorphism.)
(b): Note that if $d \in \operatorname{Der}_{R}(S, M)$ then for $r \in R, r d$ is also a derivation. Also two derivations can be added as functions and one obtains again a derivation. Thus $\operatorname{Der}_{R}(S, M)$ is an R-module. Suppose $f: M \rightarrow N$ is a morphism of S-modules. If $d \in \operatorname{Der}_{R}(S, M)$ then $f \circ d: S \rightarrow N$. If $x, y \in S$ then $f(d(x y))=f(x d y+y d x)=f(x d y)+f(y d x)=x f(d y)+y f(d x)$ as f is an S-module morphism. Thus $f \circ d \in \operatorname{Der}_{R}(S, N)$. It is now trivial to check that $\operatorname{Der}_{R}(S,-)$ yields a functor.

