Graduate Algebra
Homework 3

Due 2015-02-11

. Consider the complex
S ZJAT 22 7)AT 2 T )AL s - -

(a) Show that the complex is exact.
(b) Show that the identity map on the complex is not null-homotopic.

Proof. (a): This is trivial.

(b): Suppose id is null homotopic. Then for each position 4, id; = d; o $;41 + s; 0 d;—1 for maps of
R-modules s; : (Z/AZ); — (Z/AZ);—1. Then for any = € (Z/4Z); we have x = d;_15;(x) + s;41di(z) =
2s;(x) + s;+1(22) and the RHS is always even. Taking x = 1 yields a contradiction. O

. Let R be a ring. Let Z[Modg] be the free abelian group generated by R-modules; denote by [M]
the generator corresponding to M € Modg. Let G(R) be the quotient of Z[Modg| by the subgroup
generated by [M]—[M’']—[M"] for any three R-modules in an exact sequence 0 - M’ — M — M" — 0.
(a) If M = N are two R-modules show that [M] = [N] in G(R).
(b) Show that if 0 — M; — My — -+ — M}, — 0 is a complex of R-modules then
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In particular if the complex M*® is exact then
Y (VM) =0

in G(R).

(¢) A function ¢ : Modr — A (where A is an abelian group) is said to be additive if ¢(M) =
d(M') + ¢(M") for exact sequences 0 — M’ — M — M"” — 0. Show that ¢ extends to a
homomorphism of abelian groups ¢ : G(R) — A.

Proof. (a): Taking the exact sequuence 0 — 0 — 0 — 0 — 0 we deduce that [0] = 0. Then 0 — 0 —
M — N — 0 yields [M] = [N].

(b): Consider d; : M; — M,y giving the exact sequence 0 — kerd; — M; — Imd; — 0. Then
[M;] = [ker d;] + [Im d;]. We compute
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If M* is exact then all Hi(M*®) = 0 and since [0] = 0 we deduce that Zle(—l)i[Mi] =0.

(¢c): Define ¢(>" a;[M;]) := > a;p(M;) yielding a homomorphism of abelian groups Z[Modg] — A.
Since ¢ is additive it follows that ¢ vanishes on all generators of the submodule by which we quotient
Z[Modg] to define G(R). The first isomorphism theorem for groups then shows that ¢ factors through
the quotient G(R) — A. O

. Let R be a ring. Let Z[Projg] be the free abelian group generated by isomorphism classes of finitely
generated projective R-modules and let Ky(R) be the quotient by the subgroup generated by [P ® Q] —
[P] — [Q] for any finitely generated projectives P and Q. (Recall from last semester that a short exact
sequence where the third term is projective splits as a direct sum.)

(a) Show that [P]-[Q] = [P®r Q)] gives a well-defined ring multiplication on the abelian group Ky(R)
endowing Ko(R) with the structure of an abelian ring.

(b) Show that K yields a functor from Rings to Rings.
(¢) Show that Ky(R) = Z for any PID R.

The ring Ko(R) is the easiest example of algebraic K-theory.

Proof. (a): To make sense of this as a ring multiplication we first need to show that if P and @ are
finitely generated projective then so is P ®z Q. The latter is certainly finitely generated so we only
need to show that it is projective. Let M and N be such that P® M = F and Q & N = F’ are free.
Then F @r F' isfreeand FQr F' = PRrQ® (PRr NP M @rQ & M ®r N). Thus P Qg Q is a
direct summand of a free module and so it is projective.

Define multiplication on Z[Projg]| by (3 a;[M;]) - (3°b;[N;]) = > a:b;[M; ®r Nj]. Then Z[Projg]| is
a ring with unit [R]. Let I be the subgroup of Z[Projz] generated by [P & Q] — [P] — [Q]. To show
that Ko(R) is a ring it suffices to show that I is in fact an ideal of Z[Projg]. For this note that
([PeQ]-[PI-[Q]) [S=[PRrS®Q®rS|—[P®rS)—[Q®rS] and so I -Z[Projp] = I as desired.
Thus Ko(R) = Z[Projg]/I is a ring, being the quotient of a ring by an ideal. It is also commutative
because P Qg Q =2 Q Qg P.

(b): Suppose f : R — S is a ring homomorphism. If P is a projective R module then P ®p S is a
projective S module: indeed, if P® M = F then PRrS® M ®r S = F ®g S which is free. Consider
ST ai[Py] — Y a;[P; ®g S]. This is easily seen to be a ring homomorphism Z[Projz] — Z[Projg]. Since
— ®pg S takes direct sums to direct sums it follows that we get a well-defined ring homomorphism
Ky(R) — Ko(S). We conclude easily now that K is a functor.

(c): Recall from last semester that every finitely generated projective module over a PID is free. Thus
P = R"™ and so Z[Projg] = Z[R"|n > 0]. Moreover, [R"] = [R® --- @ R] = n[R] in Ky(R) and so
Ko(R) =Z - |R] as desired. O

. Let R be aring. Consider the following commutative diagram of R-module homomorphisms with exact
rows:

0 A B C 0
bbb
0— A — B — (' — 0

Show that there exists an exact sequence
0 — kera — ker b — ker ¢ — coker a — coker b — cokerc — 0

This is known as the snake lemma.



Proof. Consider the columns as complexes A®, B® and C®. Then the hypothesis is that the sequence
0 — A®* — B*®* — C* — 0 is an exact sequence of complexes. The long exact sequence for cohomology
of complexes yields H=1(C®) — H°(A®) — H°(B®*) — H°(C*) — H'(A®*) - HY(B®*) — H(C*) —
H?(A®). Then Example 54 from the lecture notes yields the snake lemma. O

(a) Let C be the category of local Noetherian commutative rings R such that R/mpr = Q and mor-
phisms f : R — S such that f(mg) = mg. Let V be an n-dimensional rational vector space and
T € Endg(V). By a deformation of (V,T) to R € Ob(C) we mean a free R-module Vg of rank n
and Tgr € Endg(Vg) such that (Vg,Tr) ®r (R/mg,1) = (V,T). Show that sending R € Ob(C) to
the set of deformations of (V,T) to R yields a functor D : C — Sets.

(b) Let ¢ : R — S be a homomorphism of commutative rings giving S the structure of an R-algebra.
Let M be an S-module. Let Derg(S, M) be the set of R-module homomorphisms d : S — M
such that d(xy) = d(z)y + zd(y) for all z,y € S. Show that Derg(S, —) gives a covariant functor
from S-modules to R-modules.

Proof. (a): Clearly D sends rings to sets so we need only construct D of morphisms C. Suppose f : R —
S is a morphism in C. For each deformation (Vg,Tr) € D(R) define (Vs,Ts) = (Vr,Tr) ®r (S, ids)
where S is an R-module via f. We only need to show that (Vs,Ts) € D(S) because then D(R) maps
to D(S) via ®p(S,idg) and thus D is a functor. First, if Vg & R™ then Vg = S™. Next, we need to
check that (Vs,Ts) ®g (S/mg,id) = (V,T). But

(Vs,Ts) ®s (S/mg,id) = (Vs ®@s (S/ms), Ts ®id)

(

(VR ®r S) @ (S/ms), (Tr ®id) ® id
(VR @R (S ®s S/mg), Tr ® (id ®id))
(
=X
(V.

[

Il

Vi ®@r S/mg, Tr ®id)
Ve ® R/mR,TR ® ld)
T)

where we used in row 3 that if NV is a bi-(4, B)-module then (M ®4 N) @ P2 M ®4 (N ®p P) and
in row 5 the fact that f induced the unique isomorphism R/mp = Q = S/mg. (Here we used that Q
as a ring has a unique isomorphism.)

(b): Note that if d € Derr(S, M) then for r € R, rd is also a derivation. Also two derivations can be
added as functions and one obtains again a derivation. Thus Derg(S, M) is an R-module. Suppose
f: M — N is a morphism of S-modules. If d € Derg(S, M) then fod: S — N. If z,y € S then
fld(zy)) = f(zdy + ydx) = f(ady) + f(ydx) = xf(dy) +yf(dz) as f is an S-module morphism. Thus
fod e Derg(S,N). It is now trivial to check that Derg(S, —) yields a functor.
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