
Graduate Algebra

Homework 3

Due 2015-02-11

1. Consider the complex

· · · → Z/4Z ×2−→ Z/4Z ×2−→ Z/4Z→ · · ·

(a) Show that the complex is exact.

(b) Show that the identity map on the complex is not null-homotopic.

Proof. (a): This is trivial.

(b): Suppose id is null homotopic. Then for each position i, idi = di ◦ si+1 + si ◦ di−1 for maps of
R-modules si : (Z/4Z)i → (Z/4Z)i−1. Then for any x ∈ (Z/4Z)i we have x = di−1si(x) + si+1di(x) =
2si(x) + si+1(2x) and the RHS is always even. Taking x = 1 yields a contradiction.

2. Let R be a ring. Let Z[ModR] be the free abelian group generated by R-modules; denote by [M ]
the generator corresponding to M ∈ ModR. Let G(R) be the quotient of Z[ModR] by the subgroup
generated by [M ]−[M ′]−[M ′′] for any three R-modules in an exact sequence 0→M ′ →M →M ′′ → 0.

(a) If M ∼= N are two R-modules show that [M ] = [N ] in G(R).

(b) Show that if 0→M1 →M2 → · · · →Mk → 0 is a complex of R-modules then

k∑
i=1

(−1)i[Mi] =

k∑
i=1

(−1)i[Hi(M•)]

In particular if the complex M• is exact then

k∑
i=1

(−1)i[Mi] = 0

in G(R).

(c) A function φ : ModR → A (where A is an abelian group) is said to be additive if φ(M) =
φ(M ′) + φ(M ′′) for exact sequences 0 → M ′ → M → M ′′ → 0. Show that φ extends to a
homomorphism of abelian groups φ : G(R)→ A.

Proof. (a): Taking the exact sequuence 0 → 0 → 0 → 0 → 0 we deduce that [0] = 0. Then 0 → 0 →
M → N → 0 yields [M ] = [N ].

(b): Consider di : Mi → Mi+1 giving the exact sequence 0 → ker di → Mi → Im di → 0. Then
[Mi] = [ker di] + [Im di]. We compute∑

(−1)i[Mi] =
∑

(−1)i([ker di] + [Im di])

=
∑

(−1)i([ker di]− [Im di−1])

=
∑

(−1)i[ker di/ Im di−1]

=
∑

(−1)i[Hi(M•)]
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If M• is exact then all Hi(M•) = 0 and since [0] = 0 we deduce that
∑k

i=1(−1)i[Mi] = 0.

(c): Define φ(
∑
ai[Mi]) :=

∑
aiφ(Mi) yielding a homomorphism of abelian groups Z[ModR] → A.

Since φ is additive it follows that φ vanishes on all generators of the submodule by which we quotient
Z[ModR] to define G(R). The first isomorphism theorem for groups then shows that φ factors through
the quotient G(R)→ A.

3. Let R be a ring. Let Z[ProjR] be the free abelian group generated by isomorphism classes of finitely
generated projective R-modules and let K0(R) be the quotient by the subgroup generated by [P ⊕Q]−
[P ]− [Q] for any finitely generated projectives P and Q. (Recall from last semester that a short exact
sequence where the third term is projective splits as a direct sum.)

(a) Show that [P ] · [Q] = [P ⊗RQ] gives a well-defined ring multiplication on the abelian group K0(R)
endowing K0(R) with the structure of an abelian ring.

(b) Show that K0 yields a functor from Rings to Rings.

(c) Show that K0(R) ∼= Z for any PID R.

The ring K0(R) is the easiest example of algebraic K-theory.

Proof. (a): To make sense of this as a ring multiplication we first need to show that if P and Q are
finitely generated projective then so is P ⊗R Q. The latter is certainly finitely generated so we only
need to show that it is projective. Let M and N be such that P ⊕M = F and Q⊕N = F ′ are free.
Then F ⊗R F

′ is free and F ⊗R F
′ = P ⊗R Q⊕ (P ⊗R N ⊕M ⊗R Q⊕M ⊗R N). Thus P ⊗R Q is a

direct summand of a free module and so it is projective.

Define multiplication on Z[ProjR] by (
∑
ai[Mi]) · (

∑
bj [Nj ]) =

∑
aibj [Mi ⊗R Nj ]. Then Z[ProjR] is

a ring with unit [R]. Let I be the subgroup of Z[ProjR] generated by [P ⊕ Q] − [P ] − [Q]. To show
that K0(R) is a ring it suffices to show that I is in fact an ideal of Z[ProjR]. For this note that
([P ⊕Q]− [P ]− [Q]) · [S] = [P ⊗R S⊕Q⊗R S]− [P ⊗R S]− [Q⊗R S] and so I ·Z[ProjR] = I as desired.
Thus K0(R) = Z[ProjR]/I is a ring, being the quotient of a ring by an ideal. It is also commutative
because P ⊗R Q ∼= Q⊗R P .

(b): Suppose f : R → S is a ring homomorphism. If P is a projective R module then P ⊗R S is a
projective S module: indeed, if P ⊕M = F then P ⊗R S ⊕M ⊗R S = F ⊗R S which is free. Consider∑
ai[Pi] 7→

∑
ai[Pi⊗R S]. This is easily seen to be a ring homomorphism Z[ProjR]→ Z[ProjS ]. Since

− ⊗R S takes direct sums to direct sums it follows that we get a well-defined ring homomorphism
K0(R)→ K0(S). We conclude easily now that K0 is a functor.

(c): Recall from last semester that every finitely generated projective module over a PID is free. Thus
P ∼= Rn and so Z[ProjR] = Z[Rn|n ≥ 0]. Moreover, [Rn] = [R ⊕ · · · ⊕ R] = n[R] in K0(R) and so
K0(R) = Z · [R] as desired.

4. Let R be a ring. Consider the following commutative diagram of R-module homomorphisms with exact
rows:

0 // A //

a

��

B //

b
��

C //

c

��

0

0 // A′ // B′ // C ′ // 0

Show that there exists an exact sequence

0→ ker a→ ker b→ ker c→ coker a→ coker b→ coker c→ 0

This is known as the snake lemma.
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Proof. Consider the columns as complexes A•, B• and C•. Then the hypothesis is that the sequence
0→ A• → B• → C• → 0 is an exact sequence of complexes. The long exact sequence for cohomology
of complexes yields H−1(C•) → H0(A•) → H0(B•) → H0(C•) → H1(A•) → H1(B•) → H1(C•) →
H2(A•). Then Example 54 from the lecture notes yields the snake lemma.

5. (a) Let C be the category of local Noetherian commutative rings R such that R/mR
∼= Q and mor-

phisms f : R → S such that f(mR) = mS . Let V be an n-dimensional rational vector space and
T ∈ EndQ(V ). By a deformation of (V, T ) to R ∈ Ob(C) we mean a free R-module VR of rank n
and TR ∈ EndR(VR) such that (VR, TR)⊗R (R/mR, 1) ∼= (V, T ). Show that sending R ∈ Ob(C) to
the set of deformations of (V, T ) to R yields a functor D : C → Sets.

(b) Let φ : R→ S be a homomorphism of commutative rings giving S the structure of an R-algebra.
Let M be an S-module. Let DerR(S,M) be the set of R-module homomorphisms d : S → M
such that d(xy) = d(x)y + xd(y) for all x, y ∈ S. Show that DerR(S,−) gives a covariant functor
from S-modules to R-modules.

Proof. (a): Clearly D sends rings to sets so we need only construct D of morphisms C. Suppose f : R→
S is a morphism in C. For each deformation (VR, TR) ∈ D(R) define (VS , TS) = (VR, TR) ⊗R (S, idS)
where S is an R-module via f . We only need to show that (VS , TS) ∈ D(S) because then D(R) maps
to D(S) via ⊗R(S, idS) and thus D is a functor. First, if VR ∼= Rn then VS ∼= Sn. Next, we need to
check that (VS , TS)⊗S (S/mS , id) ∼= (V, T ). But

(VS , TS)⊗S (S/mS , id) ∼= (VS ⊗S (S/mS), TS ⊗ id)

= ((VR ⊗R S)⊗ (S/mS), (TR ⊗ id)⊗ id
∼= (VR ⊗R (S ⊗S S/mS), TR ⊗ (id⊗ id))
∼= (VR ⊗R S/mS , TR ⊗ id)
∼= (VR ⊗R/mR, TR ⊗ id)
∼= (V, T )

where we used in row 3 that if N is a bi-(A,B)-module then (M ⊗A N)⊗B P ∼= M ⊗A (N ⊗B P ) and
in row 5 the fact that f induced the unique isomorphism R/mR

∼= Q ∼= S/mS . (Here we used that Q
as a ring has a unique isomorphism.)

(b): Note that if d ∈ DerR(S,M) then for r ∈ R, rd is also a derivation. Also two derivations can be
added as functions and one obtains again a derivation. Thus DerR(S,M) is an R-module. Suppose
f : M → N is a morphism of S-modules. If d ∈ DerR(S,M) then f ◦ d : S → N . If x, y ∈ S then
f(d(xy)) = f(xdy + ydx) = f(xdy) + f(ydx) = xf(dy) + yf(dx) as f is an S-module morphism. Thus
f ◦ d ∈ DerR(S,N). It is now trivial to check that DerR(S,−) yields a functor.
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