Graduate Algebra Homework 3

Due 2015-02-11

1. Consider the complex

$$\cdots \to \mathbb{Z}/4\mathbb{Z} \xrightarrow{\times 2} \mathbb{Z}/4\mathbb{Z} \xrightarrow{\times 2} \mathbb{Z}/4\mathbb{Z} \to \cdots$$

- (a) Show that the complex is exact.
- (b) Show that the identity map on the complex is not null-homotopic.

Proof. (a): This is trivial.

(b): Suppose id is null homotopic. Then for each position i, $id_i = d_i \circ s_{i+1} + s_i \circ d_{i-1}$ for maps of R-modules $s_i : (\mathbb{Z}/4\mathbb{Z})_i \to (\mathbb{Z}/4\mathbb{Z})_{i-1}$. Then for any $x \in (\mathbb{Z}/4\mathbb{Z})_i$ we have $x = d_{i-1}s_i(x) + s_{i+1}d_i(x) = 2s_i(x) + s_{i+1}(2x)$ and the RHS is always even. Taking x = 1 yields a contradiction.

- 2. Let R be a ring. Let $\mathbb{Z}[Mod_R]$ be the free abelian group generated by R-modules; denote by [M] the generator corresponding to $M \in Mod_R$. Let G(R) be the quotient of $\mathbb{Z}[Mod_R]$ by the subgroup generated by [M] [M'] [M''] for any three R-modules in an exact sequence $0 \to M' \to M \to M'' \to 0$.
 - (a) If $M \cong N$ are two *R*-modules show that [M] = [N] in G(R).
 - (b) Show that if $0 \to M_1 \to M_2 \to \cdots \to M_k \to 0$ is a complex of *R*-modules then

$$\sum_{i=1}^{k} (-1)^{i} [M_{i}] = \sum_{i=1}^{k} (-1)^{i} [H^{i}(M^{\bullet})]$$

In particular if the complex M^{\bullet} is exact then

$$\sum_{i=1}^{k} (-1)^{i} [M_{i}] = 0$$

in G(R).

(c) A function $\phi : \operatorname{Mod}_R \to A$ (where A is an abelian group) is said to be additive if $\phi(M) = \phi(M') + \phi(M'')$ for exact sequences $0 \to M' \to M \to M'' \to 0$. Show that ϕ extends to a homomorphism of abelian groups $\phi : G(R) \to A$.

Proof. (a): Taking the exact sequence $0 \to 0 \to 0 \to 0 \to 0$ we deduce that [0] = 0. Then $0 \to 0 \to M \to N \to 0$ yields [M] = [N].

(b): Consider $d_i : M_i \to M_{i+1}$ giving the exact sequence $0 \to \ker d_i \to M_i \to \operatorname{Im} d_i \to 0$. Then $[M_i] = [\ker d_i] + [\operatorname{Im} d_i]$. We compute

$$\sum (-1)^{i} [M_{i}] = \sum (-1)^{i} ([\ker d_{i}] + [\operatorname{Im} d_{i}])$$

=
$$\sum (-1)^{i} ([\ker d_{i}] - [\operatorname{Im} d_{i-1}])$$

=
$$\sum (-1)^{i} [\ker d_{i} / \operatorname{Im} d_{i-1}]$$

=
$$\sum (-1)^{i} [H^{i} (M^{\bullet})]$$

If M^{\bullet} is exact then all $H^{i}(M^{\bullet}) = 0$ and since [0] = 0 we deduce that $\sum_{i=1}^{k} (-1)^{i}[M_{i}] = 0$.

(c): Define $\phi(\sum a_i[M_i]) := \sum a_i \phi(M_i)$ yielding a homomorphism of abelian groups $\mathbb{Z}[\operatorname{Mod}_R] \to A$. Since ϕ is additive it follows that ϕ vanishes on all generators of the submodule by which we quotient $\mathbb{Z}[\operatorname{Mod}_R]$ to define G(R). The first isomorphism theorem for groups then shows that ϕ factors through the quotient $G(R) \to A$.

- 3. Let R be a ring. Let $\mathbb{Z}[\operatorname{Proj}_R]$ be the free abelian group generated by isomorphism classes of finitely generated projective R-modules and let $K_0(R)$ be the quotient by the subgroup generated by $[P \oplus Q] [P] [Q]$ for any finitely generated projectives P and Q. (Recall from last semester that a short exact sequence where the third term is projective splits as a direct sum.)
 - (a) Show that $[P] \cdot [Q] = [P \otimes_R Q]$ gives a well-defined ring multiplication on the abelian group $K_0(R)$ endowing $K_0(R)$ with the structure of an abelian ring.
 - (b) Show that K_0 yields a functor from Rings to Rings.
 - (c) Show that $K_0(R) \cong \mathbb{Z}$ for any PID R.

The ring $K_0(R)$ is the easiest example of algebraic K-theory.

Proof. (a): To make sense of this as a ring multiplication we first need to show that if P and Q are finitely generated projective then so is $P \otimes_R Q$. The latter is certainly finitely generated so we only need to show that it is projective. Let M and N be such that $P \oplus M = F$ and $Q \oplus N = F'$ are free. Then $F \otimes_R F'$ is free and $F \otimes_R F' = P \otimes_R Q \oplus (P \otimes_R N \oplus M \otimes_R Q \oplus M \otimes_R N)$. Thus $P \otimes_R Q$ is a direct summand of a free module and so it is projective.

Define multiplication on $\mathbb{Z}[\operatorname{Proj}_R]$ by $(\sum a_i[M_i]) \cdot (\sum b_j[N_j]) = \sum a_i b_j[M_i \otimes_R N_j]$. Then $\mathbb{Z}[\operatorname{Proj}_R]$ is a ring with unit [R]. Let I be the subgroup of $\mathbb{Z}[\operatorname{Proj}_R]$ generated by $[P \oplus Q] - [P] - [Q]$. To show that $K_0(R)$ is a ring it suffices to show that I is in fact an ideal of $\mathbb{Z}[\operatorname{Proj}_R]$. For this note that $([P \oplus Q] - [P] - [Q]) \cdot [S] = [P \otimes_R S \oplus Q \otimes_R S] - [P \otimes_R S] - [Q \otimes_R S]$ and so $I \cdot \mathbb{Z}[\operatorname{Proj}_R] = I$ as desired. Thus $K_0(R) = \mathbb{Z}[\operatorname{Proj}_R]/I$ is a ring, being the quotient of a ring by an ideal. It is also commutative because $P \otimes_R Q \cong Q \otimes_R P$.

(b): Suppose $f : R \to S$ is a ring homomorphism. If P is a projective R module then $P \otimes_R S$ is a projective S module: indeed, if $P \oplus M = F$ then $P \otimes_R S \oplus M \otimes_R S = F \otimes_R S$ which is free. Consider $\sum a_i[P_i] \mapsto \sum a_i[P_i \otimes_R S]$. This is easily seen to be a ring homomorphism $\mathbb{Z}[\operatorname{Proj}_R] \to \mathbb{Z}[\operatorname{Proj}_S]$. Since $- \otimes_R S$ takes direct sums to direct sums it follows that we get a well-defined ring homomorphism $K_0(R) \to K_0(S)$. We conclude easily now that K_0 is a functor.

(c): Recall from last semester that every finitely generated projective module over a PID is free. Thus $P \cong R^n$ and so $\mathbb{Z}[\operatorname{Proj}_R] = \mathbb{Z}[R^n | n \ge 0]$. Moreover, $[R^n] = [R \oplus \cdots \oplus R] = n[R]$ in $K_0(R)$ and so $K_0(R) = \mathbb{Z} \cdot [R]$ as desired.

4. Let R be a ring. Consider the following commutative diagram of R-module homomorphisms with exact rows:

Show that there exists an exact sequence

 $0 \to \ker a \to \ker b \to \ker c \to \operatorname{coker} a \to \operatorname{coker} b \to \operatorname{coker} c \to 0$

This is known as the snake lemma.

Proof. Consider the columns as complexes A^{\bullet} , B^{\bullet} and C^{\bullet} . Then the hypothesis is that the sequence $0 \to A^{\bullet} \to B^{\bullet} \to C^{\bullet} \to 0$ is an exact sequence of complexes. The long exact sequence for cohomology of complexes yields $H^{-1}(C^{\bullet}) \to H^0(A^{\bullet}) \to H^0(B^{\bullet}) \to H^0(C^{\bullet}) \to H^1(A^{\bullet}) \to H^1(B^{\bullet}) \to H^1(C^{\bullet}) \to H^2(A^{\bullet})$. Then Example 54 from the lecture notes yields the snake lemma.

- 5. (a) Let \mathcal{C} be the category of local Noetherian commutative rings R such that $R/\mathfrak{m}_R \cong \mathbb{Q}$ and morphisms $f: R \to S$ such that $f(\mathfrak{m}_R) = \mathfrak{m}_S$. Let V be an n-dimensional rational vector space and $T \in \operatorname{End}_{\mathbb{Q}}(V)$. By a *deformation* of (V,T) to $R \in \operatorname{Ob}(\mathcal{C})$ we mean a free R-module V_R of rank n and $T_R \in \operatorname{End}_R(V_R)$ such that $(V_R, T_R) \otimes_R (R/\mathfrak{m}_R, 1) \cong (V,T)$. Show that sending $R \in \operatorname{Ob}(\mathcal{C})$ to the set of deformations of (V,T) to R yields a functor $D: \mathcal{C} \to \operatorname{Sets}$.
 - (b) Let $\phi : R \to S$ be a homomorphism of commutative rings giving S the structure of an R-algebra. Let M be an S-module. Let $\text{Der}_R(S, M)$ be the set of R-module homomorphisms $d : S \to M$ such that d(xy) = d(x)y + xd(y) for all $x, y \in S$. Show that $\text{Der}_R(S, -)$ gives a covariant functor from S-modules to R-modules.

Proof. (a): Clearly D sends rings to sets so we need only construct D of morphisms C. Suppose $f: R \to S$ is a morphism in C. For each deformation $(V_R, T_R) \in D(R)$ define $(V_S, T_S) = (V_R, T_R) \otimes_R (S, \operatorname{id}_S)$ where S is an R-module via f. We only need to show that $(V_S, T_S) \in D(S)$ because then D(R) maps to D(S) via $\otimes_R(S, \operatorname{id}_S)$ and thus D is a functor. First, if $V_R \cong R^n$ then $V_S \cong S^n$. Next, we need to check that $(V_S, T_S) \otimes_S (S/\mathfrak{m}_S, \operatorname{id}) \cong (V, T)$. But

$$(V_S, T_S) \otimes_S (S/\mathfrak{m}_S, \mathrm{id}) \cong (V_S \otimes_S (S/\mathfrak{m}_S), T_S \otimes \mathrm{id})$$

= $((V_R \otimes_R S) \otimes (S/\mathfrak{m}_S), (T_R \otimes \mathrm{id}) \otimes \mathrm{id}$
 $\cong (V_R \otimes_R (S \otimes_S S/\mathfrak{m}_S), T_R \otimes (\mathrm{id} \otimes \mathrm{id}))$
 $\cong (V_R \otimes_R S/\mathfrak{m}_S, T_R \otimes \mathrm{id})$
 $\cong (V_R \otimes R/\mathfrak{m}_R, T_R \otimes \mathrm{id})$
 $\cong (V, T)$

where we used in row 3 that if N is a bi-(A, B)-module then $(M \otimes_A N) \otimes_B P \cong M \otimes_A (N \otimes_B P)$ and in row 5 the fact that f induced the unique isomorphism $R/\mathfrak{m}_R \cong \mathbb{Q} \cong S/\mathfrak{m}_S$. (Here we used that \mathbb{Q} as a ring has a unique isomorphism.)

(b): Note that if $d \in \text{Der}_R(S, M)$ then for $r \in R$, rd is also a derivation. Also two derivations can be added as functions and one obtains again a derivation. Thus $\text{Der}_R(S, M)$ is an R-module. Suppose $f: M \to N$ is a morphism of S-modules. If $d \in \text{Der}_R(S, M)$ then $f \circ d : S \to N$. If $x, y \in S$ then f(d(xy)) = f(xdy + ydx) = f(xdy) + f(ydx) = xf(dy) + yf(dx) as f is an S-module morphism. Thus $f \circ d \in \text{Der}_R(S, N)$. It is now trivial to check that $\text{Der}_R(S, -)$ yields a functor.