Graduate Algebra
 Homework 4

Due 2015-02-18

Remark 1. It happened in the past that some problems were perceived as much more complicated than what they really were. As an added help, when there is a problem that is straightforward I will put an asterisk next to it.

1. Let R be a commutative local ring with maximal ideal \mathfrak{m}.
(a) (Optional) Let M be a finitely generated R-module. Suppose $m_{1}, \ldots, m_{k} \in M$ such that $m_{1}, \ldots, m_{k} \bmod \mathfrak{m}$ form a basis of $M / \mathfrak{m} M$ over the field R / \mathfrak{m}. Show that m_{1}, \ldots, m_{k} generate M as an R-module. [Hint: Nakayama's lemma.]
(b) If M is a finitely generated projective R-module, show that M is free. [Hint: Show that M is a direct summand of a finite rank free R module. Then use (a).]
2 . Let R be a commutative ring.
(a) * Show that every finitely generated projective R-module N is locally free, i.e., $N_{\mathfrak{p}}$ is free over $S_{\mathfrak{p}}$ for any prime ideal \mathfrak{p} of S.
(b) (Optional) Suppose S is an R-algebra and M is an R-module. Show that $S \otimes_{R} \wedge^{k} M \cong \wedge^{k}\left(S \otimes_{R} M\right)$ for all $k \geq 0$. Conclude that formation of exterior powers commutes with localizations.
(c) Show that if M, N are finitely generated projective R-modules then

$$
\wedge^{k}(M \oplus N) \cong \bigoplus_{i+j=k} \wedge^{i} M \otimes_{R} \wedge^{j} N
$$

[Hint: Take the natural map from the RHS to the LHS. To check that this is an isomorphism you may use that being an isomorphism is a local property. Then use (b).]
3. Let R be a ring and $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ an exact sequence of R-modules. Suppose $\ldots \rightarrow P_{1}^{\prime} \rightarrow$ $P_{0}^{\prime} \rightarrow M^{\prime} \rightarrow 0$ and $\ldots \rightarrow P_{1}^{\prime \prime} \rightarrow P_{0}^{\prime \prime} \rightarrow M^{\prime \prime} \rightarrow 0$ are two projective resolutions. Show that there exist R-module maps such that the following diagram is commutative with exact rows and columns:

[Hint: Use the snake lemma to construct the maps inductively.]
4. Let R be a commutative ring, S a commutative R-algebra, M an S-module and N an R-module.
(a) * Show that $\operatorname{Hom}_{R}(M, N)$ is an S-module with respect to $(s \cdot f)(m)=f(s m)$.
(b) Consider the map $\operatorname{Hom}_{R}(M, N) \rightarrow \operatorname{Hom}_{S}\left(M, \operatorname{Hom}_{R}(S, N)\right)$ sending f to $m \mapsto(s \mapsto f(s m))$. Show that this is an isomorphism of S-modules.
(c) * If I is an injective R-module show that $\operatorname{Hom}_{R}(S, I)$ is an injective S-module.
(d) If R is a field show that M is injective as an R-module and conclude that M, as an S-module, injects into an injective S-module.
(e) (Optional) If $R=\mathbb{Z}$ (and every ring is a \mathbb{Z}-algebra), show that \mathbb{Q} / \mathbb{Z} is an injective R-module and conclude that M, as an S-module, injects into an injective S-module. [Hint: Show that as a \mathbb{Z}-module M injects into $\prod_{f \in \operatorname{Hom}(M, \mathbb{Q} / \mathbb{Z})} \mathbb{Q} / \mathbb{Z}$.]
This exercise is true for non-commutative algebras too, with care taken about left and right modules.

