Graduate Algebra Homework 4

Due 2015-02-18

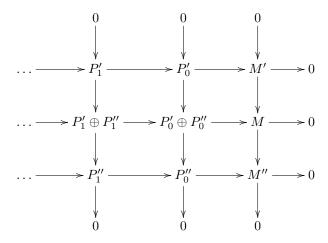
Remark 1. It happened in the past that some problems were perceived as much more complicated than what they really were. As an added help, when there is a problem that is straightforward I will put an asterisk next to it.

- 1. Let R be a commutative local ring with maximal ideal \mathfrak{m} .
 - (a) (Optional) Let M be a finitely generated R-module. Suppose $m_1, \ldots, m_k \in M$ such that $m_1, \ldots, m_k \mod \mathfrak{m}$ form a basis of $M/\mathfrak{m}M$ over the field R/\mathfrak{m} . Show that m_1, \ldots, m_k generate M as an R-module. [Hint: Nakayama's lemma.]
 - (b) If M is a finitely generated projective R-module, show that M is free. [Hint: Show that M is a direct summand of a finite rank free R module. Then use (a).]
- 2. Let R be a commutative ring.
 - (a) * Show that every finitely generated projective *R*-module *N* is locally free, i.e., $N_{\mathfrak{p}}$ is free over $S_{\mathfrak{p}}$ for any prime ideal \mathfrak{p} of *S*.
 - (b) (Optional) Suppose S is an R-algebra and M is an R-module. Show that $S \otimes_R \wedge^k M \cong \wedge^k (S \otimes_R M)$ for all $k \ge 0$. Conclude that formation of exterior powers commutes with localizations.
 - (c) Show that if M, N are finitely generated projective R-modules then

$$\wedge^k (M \oplus N) \cong \bigoplus_{i+j=k} \wedge^i M \otimes_R \wedge^j N$$

[Hint: Take the natural map from the RHS to the LHS. To check that this is an isomorphism you may use that being an isomorphism is a local property. Then use (b).]

3. Let R be a ring and $0 \to M' \to M \to M'' \to 0$ an exact sequence of R-modules. Suppose $\ldots \to P'_1 \to P'_0 \to M' \to 0$ and $\ldots \to P''_1 \to P''_0 \to M'' \to 0$ are two projective resolutions. Show that there exist R-module maps such that the following diagram is commutative with exact rows and columns:



[Hint: Use the snake lemma to construct the maps inductively.]

- 4. Let R be a commutative ring, S a commutative R-algebra, M an S-module and N an R-module.
 - (a) * Show that $\operatorname{Hom}_R(M, N)$ is an S-module with respect to $(s \cdot f)(m) = f(sm)$.
 - (b) Consider the map $\operatorname{Hom}_R(M, N) \to \operatorname{Hom}_S(M, \operatorname{Hom}_R(S, N))$ sending f to $m \mapsto (s \mapsto f(sm))$. Show that this is an isomorphism of S-modules.
 - (c) * If I is an injective R-module show that $\operatorname{Hom}_R(S, I)$ is an injective S-module.
 - (d) If R is a field show that M is injective as an R-module and conclude that M, as an S-module, injects into an injective S-module.

This exercise is true for non-commutative algebras too, with care taken about left and right modules.