
Graduate Algebra

Homework 4

Due 2015-02-18

1. Let R be a commutative local ring with maximal ideal m.

(a) (Optional) Let M be a finitely generated R-module. Suppose m1, . . . ,mk ∈ M such that
m1, . . . ,mk mod m form a basis of M/mM over the field R/m. Show that m1, . . . ,mk gener-
ate M as an R-module. [Hint: Nakayama’s lemma.]

(b) If M is also projective, show that M is free. [Hint: Find a suitable free module of which M is a
direct summand.]

Proof. (b): Let m1, . . . ,mk be a minimal set of generators of M over R. This gives an exact sequence
Rk → M → 0 and let K be the kernel. Thus 0 → K → Rk → M → 0. Since M is projective this
sequence splits as Rk = M ⊕ K. Tensoring with R/m we get (R/m)k = M/mM ⊕ N/mN . By part
(a) any basis of M/mM as a vector space over the field R/m lifts to a set of generators of M . Thus
dimR/m M/mM ≥ k and thus must equal k. This implies that N/mN = 0. Since m is the Jacobson
radical it follows from Nakayama’s lemma that N = 0 and so M is free.

2. Let R be a commutative ring.

(a) Show that every finitely generated projective R-module N is locally free, i.e., Np is free over Sp

for any prime ideal p of S.

(b) (Optional) Suppose S is an R-algebra and M is an R-module. Show that S⊗R∧kM ∼= ∧k(S⊗RM)
for all k ≥ 0. Conclude that formation of exterior powers commutes with localization.

(c) Show that if M,N are finitely generated projective R-modules then

∧k(M ⊕N) ∼=
⊕

i+j=k

∧iM ⊗R ∧jN

[Hint: Whether a morphism of modules is an isomorphism is a local property.]

Proof. (a): For each prime ideal p the ring Rp is local. Since N is projective there exists M such that
M ⊕N is free of finite rank (see previous exercise). But then Mp ⊕Np is free of finite rank and so Np

is finitely generated projective. From 1 (b) it follows that Np is free.

(b): Consider f : S ⊗R ∧kM → ∧k(S ⊗R M) sending
∑

i si ⊗ ∧jmi,j to
∑

i si ∧j (1 ⊗mi,j). Also let
g : ∧k(S ⊗R M) → S ⊗R ∧kM sending

∑
j ∧isi,j ⊗mi,j to

∑
j(
∏

i si,j) ⊗ ∧imi,j . Then f and g are

mutually inverse isomorphisms. For a prime ideal p setting S = Rp we deduce that ∧iMp
∼= (∧iM)p.

(c): The localization functor is simply − ⊗R Rp and so localization, by (b), commutes with exterior
powers. It also commutes with tensor products and direct sums.

Consider the homomorphism f :
⊕
∧iM ⊗R ∧jN → ∧k(M ⊕ N) sending ⊕mi ⊗ nj to

∑
mi ∧ nj .

Localizing at p we get fp :
⊕
∧iMp ⊗Rp

∧jNp → ∧k(Mp ⊕Np). From class we know that this natural
map is an isomorphism. Thus fp is an isomorphism for all p which implies that f is an isomorphism.
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3. Let R be a ring and 0→M ′ →M →M ′′ → 0 an exact sequence of R-modules. Suppose . . .→ P ′
1 →

P ′
0 → M ′ → 0 and . . . → P ′′

1 → P ′′
0 → M ′′ → 0 are two projective resolutions. Show that there exist

R-module maps such that the following diagram is commutative with exact rows and columns:

0

��

0

��

0

��
. . . // P ′

1
//

��

P ′
0

//

��

M ′ //

��

0

. . . // P ′
1 ⊕ P ′′

1
//

��

P ′
0 ⊕ P ′′

0
//

��

M //

��

0

. . . // P ′′
1

//

��

P ′′
0

//

��

M ′′ //

��

0

0 0 0

[Hint: You might find the snake lemma useful.]

Proof. We’ll do by induction on n. For n = 0 take the vertical maps to be split exact sequence
0→ P ′

0 → P ′
0 ⊕ P ′′

0 → P ′′
0 → 0.

0

��

0

��
P ′
0

//

��

M ′ //

��

0

P ′
0 ⊕ P ′′

0

$$

//

��

M //

��

0

P ′′
0

//

��

M ′′ //

��

0

0 0

where the diagonal arrow is composition and the dashed arrow follows from projectivity of P ′
0 ⊕ P ′′

0 .
The snake lemma then implies that the dashed arrow is surjective and that we get a commutative
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diagram with exact columns

0

��

0

��

0

��
0 // ker′ //

��

P ′
0

//

��

M ′ //

��

0

0 // ker //

��

P ′
0 ⊕ P ′′

0

##

//

��

M //

��

0

0 // ker′′ //

��

P ′′
0

//

��

M ′′ //

��

0

0 0 0

Remark that . . . → P ′
1 → ker′ → 0 and . . . P ′′

1 → ker′′ → 0 are projective resolutions. The above
argument implies the existence of a commutative diagram with exact columns

0

��

0

��
P ′
1

//

��

ker′ //

��

0

P ′
1 ⊕ P ′′

1

$$

//

��

ker //

��

0

P ′′
1

//

��

ker′′ //

��

0

0 0

and again the dashed arrow is surjective. This implies that the resulting diagram

0

��

0

��

0

��
P ′
1

//

��

P ′
0

//

��

M ′ //

��

0

P ′
1 ⊕ P ′′

1
//

��

P ′
0 ⊕ P ′′

0
//

��

M //

��

0

P ′′
1

//

��

P ′′
0

//

��

M ′′ //

��

0

0 0 0

has exact rows and columns. Continuing this procedure yields the desired projective resolution of
M .
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4. Let R be a commutative ring, S a commutative R-algebra, M an S-module and N an R-module.

(a) Show that HomR(M,N) is an S-module with respect to (s · f)(m) = f(sm).

(b) Consider the map HomR(M,N) → HomS(M,HomR(S,N)) sending f to m 7→ (s 7→ f(sm)).
Show that this is an isomorphism of S-modules.

(c) If I is an injective R-module show that HomR(S, I) is an injective S-module.

(d) If R is a field show that M is injective as an R-module and conclude that M , as an S-module,
injects into an S-module.

(e) (Optional) If R = Z (and every ring is a Z-algebra), show that Q/Z is an injective R-module and
conclude that M , as an S-module, injects into an S-module. [Hint: Show that as a Z-module M

injects into
∏

f∈HomZ(M,Q/Z)

Q/Z.]

This exercise is true for non-commutative algebras too, with care taken about left and right modules.

Proof. (a): HomR(M,N) is an R-module so we only need to check that multiplication by S satisfies the
module axioms. The formula implies that s · (r · f) = (sr) · f and R-linearity of f implies distributivity
with respect to addition.

(b): Suppose g : M → HomR(S,N) is an S-morphism. Define f : M → N by f(m) = g(m)(1). This
is clearly R-linear and the two maps between HomR(M,N) amd HomS(M,HomR(S,N)) are inverses
to each other, using the formula from (a).

(c): If I is R-injective then HomR(−, I) is exact and so HomS(−,HomR(S, I)) is exact which implies
that HomR(S, I) is S-injective.

(d): Every subvector space A of B is a direct summand so B = A ⊕ A′. This implies that every
homomorphism A→M lifts to B →M simply by projecting to A. Thus M is injective. Alternatively
R, being a field, is a PID and M is divisible. Consider the identity map M →M . This yields the map
M → HomR(S,M) sending m 7→ (s 7→ sm). This is clearly injective (evaluate at s = 1) so M injects
into the injective S-module HomR(S,M).
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