Graduate Algebra
Homework 4

Due 2015-02-18

1. Let R be a commutative local ring with maximal ideal m.

(a) (Optional) Let M be a finitely generated R-module. Suppose mi,...,mp € M such that
my,...,m, mod m form a basis of M/mM over the field R/m. Show that mq,..., my gener-
ate M as an R-module. [Hint: Nakayama’s lemma.]

(b) If M is also projective, show that M is free. [Hint: Find a suitable free module of which M is a
direct summand.]

Proof. (b): Let mq,..., my be a minimal set of generators of M over R. This gives an exact sequence
RF — M — 0 and let K be the kernel. Thus 0 - K — R¥ — M — 0. Since M is projective this
sequence splits as R¥ = M @ K. Tensoring with R/m we get (R/m)* = M/mM & N/mN. By part
(a) any basis of M/mM as a vector space over the field R/m lifts to a set of generators of M. Thus
dimp/m M/mM > k and thus must equal k. This implies that N/mN = 0. Since m is the Jacobson
radical it follows from Nakayama’s lemma that N = 0 and so M is free. O

2. Let R be a commutative ring.

(a) Show that every finitely generated projective R-module N is locally free, i.e., N, is free over S,
for any prime ideal p of S.

(b) (Optional) Suppose S is an R-algebra and M is an R-module. Show that S®rAFM = AF(S@r M)
for all £ > 0. Conclude that formation of exterior powers commutes with localization.

(¢) Show that if M, N are finitely generated projective R-modules then

NMeN) = @ AMor NN
i+j=k

[Hint: Whether a morphism of modules is an isomorphism is a local property.]

Proof. (a): For each prime ideal p the ring R, is local. Since N is projective there exists M such that
M @ N is free of finite rank (see previous exercise). But then M, @ N, is free of finite rank and so N,
is finitely generated projective. From 1 (b) it follows that NV, is free.

(b): Consider f: S®@pr A*M — AF(S ®pr M) sending >, 8; @ Ajm;j to >, 8 Aj (1 @my ;). Also let
g: N (S®r M) — S ®r A*M sending Zj NiSij @ my j to Z](Hl 5i;) ® Aym; j. Then f and g are
mutually inverse isomorphisms. For a prime ideal p setting S = R, we deduce that A*M, = (A*M),.

(c): The localization functor is simply — ®g R, and so localization, by (b), commutes with exterior
powers. It also commutes with tensor products and direct sums.

Consider the homomorphism f : @AM @ AVN — A¥(M @ N) sending ©m; ® n; to > m; A nj;.
Localizing at p we get f, : @AMy @, NNy — A¥(My @ Np). From class we know that this natural
map is an isomorphism. Thus f, is an isomorphism for all p which implies that f is an isomorphism. [J



3. Let R be aring and 0 = M’ — M — M"” — 0 an exact sequence of R-modules. Suppose ... — P{ —
P, —- M —0and ... » P/’ = P}/ - M"” — 0 are two projective resolutions. Show that there exist
R-module maps such that the following diagram is commutative with exact rows and columns:

0 0 0

[Hint: You might find the snake lemma useful.]

Proof. We'll do by induction on n. For n = 0 take the vertical maps to be split exact sequence
0— Py— Py@® Py — P — 0.

where the diagonal arrow is composition and the dashed arrow follows from projectivity of P} & Py .
The snake lemma then implies that the dashed arrow is surjective and that we get a commutative



diagram with exact columns

0 ker Ph®P)——>M——0
0 ker” P} M 0
0 0 0

Remark that ... — P{ — ker’ — 0 and ...PJ’ — ker” — 0 are projective resolutions. The above
argument implies the existence of a commutative diagram with exact columns

0 0
P ker’ 0
PP — —>ker——=0
P/ ker” 0
0 0
and again the dashed arrow is surjective. This implies that the resulting diagram

0 0 0
P/ P M’ 0

PloP/ —>P,@P] —=M—>0

P{I Pé/ M// O
0 0 0
has exact rows and columns. Continuing this procedure yields the desired projective resolution of
O

M.



4. Let R be a commutative ring, S a commutative R-algebra, M an S-module and N an R-module.

(a) Show that Hompg(M, N) is an S-module with respect to (s- f)(m) = f(sm).

(b) Consider the map Homp(M, N) — Homg(M,Hompg(S, N)) sending f to m — (s — f(sm)).
Show that this is an isomorphism of S-modules.

(¢) If I is an injective R-module show that Hompg(S, I) is an injective S-module.

(d) If R is a field show that M is injective as an R-module and conclude that M, as an S-module,
injects into an S-module.

(e) (Optional) If R = Z (and every ring is a Z-algebra), show that Q/Z is an injective R-module and
conclude that M, as an S-module, injects into an S-module. [Hint: Show that as a Z-module M
injects into H Q/z.]

feHomz(M,Q/Z)

This exercise is true for non-commutative algebras too, with care taken about left and right modules.

Proof. (a): Hompg (M, N) is an R-module so we only need to check that multiplication by S satisfies the
module axioms. The formula implies that s- (r- f) = (sr) - f and R-linearity of f implies distributivity
with respect to addition.

(b): Suppose g : M — Hompg(S, N) is an S-morphism. Define f: M — N by f(m) = g(m)(1). This
is clearly R-linear and the two maps between Hompg (M, N) amd Homg(M,Hompg(S, N)) are inverses
to each other, using the formula from (a).

(c): If I is R-injective then Homp(—,I) is exact and so Homg(—, Hompg(S,I)) is exact which implies
that Hompg(S, I) is S-injective.

(d): Every subvector space A of B is a direct summand so B = A @ A’. This implies that every
homomorphism A — M lifts to B — M simply by projecting to A. Thus M is injective. Alternatively
R, being a field, is a PID and M is divisible. Consider the identity map M — M. This yields the map
M — Hompg/(S, M) sending m +— (s — sm). This is clearly injective (evaluate at s = 1) so M injects
into the injective S-module Hompg (S, M). O



