Graduate Algebra Homework 5

Due 2015-02-25

1. Consider the ideal $I=(x, y) \subset R=\mathbb{C}[x, y]$ and \mathbb{C} as the R-module R / I.
(a) Show that $\operatorname{Tor}_{1}^{R}(I, \mathbb{C}) \cong \operatorname{Tor}_{2}^{R}(\mathbb{C}, \mathbb{C})$.
(b) Find a projective resolution of \mathbb{C}. [Hint: Use the algorithm from class.]
(c) Show that I is not flat over R. [Hint: Use (a) and (b).]
(d) (Optional) Find the kernel of the multiplication map $I \otimes_{R} I \rightarrow I$ as a submodule of $I \otimes_{R} I$.
2. Suppose R is a commutative ring and $r \in R$. When r is not a zero divisor we saw in class that $\operatorname{Tor}_{1}^{R}(R /(r), M) \cong M[r]$ and $\operatorname{Tor}_{n}^{R}(R /(r), M)=0$ for $n \geq 2$. Show that if r is a zero divisor then

$$
\operatorname{Tor}_{n}^{R}(R /(r), M) \cong \operatorname{Tor}_{n-2}^{R}(R[r], M)
$$

for $n \geq 3$, where $R[r]=\{s \in R \mid r s=0\}$. [Hint: Look at the exact sequence $0 \rightarrow R[r] \rightarrow R \rightarrow R \rightarrow$ $R /(r) \rightarrow 0$.]
3. Let R be a commutative ring. Let $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ be an exact sequence of R-modules. If M^{\prime} and $M^{\prime \prime}$ are flat/injective/projective show that M is flat/injective/projective. [Hint: Use the derived functor criterion for flat/injective/projective.]
4. Let R be a commutative ring and S a commutative R-algebra. Recall that you showed that $\operatorname{Der}_{R}(S,-)$ is a covariant functor from S-modules to sets.
(a) * For $r \in R$ and $d \in \operatorname{Der}_{R}(S, M)$ show that $d(r)=0$.
(b) Consider $S \otimes_{R} S$ as a ring with respect to coordinate-wise multiplication (i.e., $(a \otimes b) \cdot\left(a^{\prime} \otimes b^{\prime}\right)=$ $\left.\left(a a^{\prime}\right) \otimes\left(b b^{\prime}\right)\right)$ and as an S-module with respect to $s \cdot(a \otimes b)=(s a) \otimes b$. Let I be the kernel of the multiplication S-module homomorphism $S \otimes_{R} S \rightarrow S$ and let $\Omega_{S / R}=I / I^{2}$ as an S-module (here I^{2} is with respect to the ring multiplication on $S \otimes_{R} S$. Define $D: S \rightarrow \Omega_{S / R}$ sending $s \in S$ to $s \otimes 1-1 \otimes s$. Show that $D \in \operatorname{Der}_{R}\left(S, \Omega_{S / R}\right)$.
(c) * Let M be an S-module. Show that $S * M$ defined as the abelian group $S \oplus M$ together with multiplication $(s, m) \cdot\left(s^{\prime}, m^{\prime}\right)=\left(s s^{\prime}, s m^{\prime}+s^{\prime} m\right)$ is an S-algebra which contains M via $m \mapsto(0, m)$ as a sub- S-module.
(d) Let M be as above and $d \in \operatorname{Der}_{R}(S, M)$. Show that there exists an S-algebra homomorphism $\phi: S \otimes_{R} S \rightarrow S * M$ such that $\phi(x \otimes y)=(x y, x d(y))$; show that this homomorphism factors through an S-module homomorphism $I / I^{2} \rightarrow M$.
(e) Deduce that the functor $\operatorname{Der}_{R}(S,-)$ is represented by the S-module $\Omega_{S / R}$.

