Graduate Algebra Homework 5

Due 2015-02-25

- 1. Consider the ideal $I = (x, y) \subset R = \mathbb{C}[x, y]$ and \mathbb{C} as the *R*-module R/I.
 - (a) Show that $\operatorname{Tor}_1^R(I, \mathbb{C}) \cong \operatorname{Tor}_2^R(\mathbb{C}, \mathbb{C})$.
 - (b) Find a projective resolution of \mathbb{C} . [Hint: Use the algorithm from class.]
 - (c) Show that I is not flat over R. [Hint: Use (a) and (b).]
 - (d) (Optional) Find the kernel of the multiplication map $I \otimes_R I \to I$ as a submodule of $I \otimes_R I$.
- 2. Suppose R is a commutative ring and $r \in R$. When r is not a zero divisor we saw in class that $\operatorname{Tor}_{1}^{R}(R/(r), M) \cong M[r]$ and $\operatorname{Tor}_{n}^{R}(R/(r), M) = 0$ for $n \geq 2$. Show that if r is a zero divisor then

$$\operatorname{Tor}_{n}^{R}(R/(r), M) \cong \operatorname{Tor}_{n-2}^{R}(R[r], M)$$

for $n \geq 3$, where $R[r] = \{s \in R | rs = 0\}$. [Hint: Look at the exact sequence $0 \rightarrow R[r] \rightarrow R \rightarrow R \rightarrow R/(r) \rightarrow 0$.]

- 3. Let R be a commutative ring. Let $0 \to M' \to M \to M'' \to 0$ be an exact sequence of R-modules. If M' and M'' are flat/injective/projective show that M is flat/injective/projective. [Hint: Use the derived functor criterion for flat/injective/projective.]
- 4. Let R be a commutative ring and S a commutative R-algebra. Recall that you showed that $\text{Der}_R(S, -)$ is a covariant functor from S-modules to sets.
 - (a) * For $r \in R$ and $d \in \text{Der}_R(S, M)$ show that d(r) = 0.
 - (b) Consider $S \otimes_R S$ as a ring with respect to coordinate-wise multiplication (i.e., $(a \otimes b) \cdot (a' \otimes b') = (aa') \otimes (bb')$) and as an S-module with respect to $s \cdot (a \otimes b) = (sa) \otimes b$. Let I be the kernel of the multiplication S-module homomorphism $S \otimes_R S \to S$ and let $\Omega_{S/R} = I/I^2$ as an S-module (here I^2 is with respect to the ring multiplication on $S \otimes_R S$). Define $D : S \to \Omega_{S/R}$ sending $s \in S$ to $s \otimes 1 1 \otimes s$. Show that $D \in \text{Der}_R(S, \Omega_{S/R})$.
 - (c) * Let M be an S-module. Show that S * M defined as the abelian group $S \oplus M$ together with multiplication $(s, m) \cdot (s', m') = (ss', sm' + s'm)$ is an S-algebra which contains M via $m \mapsto (0, m)$ as a sub-S-module.
 - (d) Let M be as above and $d \in \text{Der}_R(S, M)$. Show that there exists an S-algebra homomorphism $\phi: S \otimes_R S \to S * M$ such that $\phi(x \otimes y) = (xy, xd(y))$; show that this homomorphism factors through an S-module homomorphism $I/I^2 \to M$.
 - (e) Deduce that the functor $\operatorname{Der}_R(S, -)$ is represented by the S-module $\Omega_{S/R}$.