
Graduate Algebra

Homework 5

Due 2015-02-25

1. Consider the ideal I = (x, y) ⊂ R = C[x, y] and C as the R-module R/I.

(a) Show that TorR1 (I,C) ∼= TorR2 (C,C).

(b) Find a projective resolution of C. [Hint: Use the algorithm from class.]

(c) Show that I is not flat over R. [Hint: Use (a) and (b).]

(d) (Optional) Find the kernel of the multiplication map I ⊗R I → I as a submodule of I ⊗R I.

Proof. (a): Consider the exact sequence 0 → I → R → R/I → 0 with R in the middle projective.
Then dimension shifting gives the desired isomorphism.

(b): Follow, roughly, the algorithm from class. Have 0 → I → R → R/I → 0 but I is not projective.
However, there is a surjection R2 → I → 0 sending (a, b) 7→ ax + by. The kernel consists of (a, b)
such that ax = −by in which case a = cy and b = −cx since C[x, y] is a UFD. Thus the kernel is

isomorphic to R and so 0→ R
c7→(cy,−cx)−→ R2 (a,b) 7→ax+by−→ R → R/I → 0 is an exact sequence with free

and therefore projective modules.

(c): Note that

Tor1(I.C) ∼= Tor2(C,C)

∼= H2(0→ R⊗R C→ R2 ⊗R C→ R⊗R C)

= ker(R⊗R C→ R2 ⊗R C)

= R⊗R C
= C

since the map c⊗ z 7→ (cy,−cx)⊗ z = c⊗ yz− c⊗ xz = 0 as x, y are 0 in C = R/I. Thus I is not flat.

(d): We know that Tor1(I,C) = Tor1(I,R/I) = ker(I ⊗R I → I) and this is isomorphic to C. Note
that x⊗ y − y ⊗ x is in the kernel and thus the kernel is C(x⊗ y − y ⊗ x).

2. Suppose R is a commutative ring and r ∈ R. When r is not a zero divisor we saw in class that
TorR1 (R/(r),M) ∼= M [r] and TorRn (R/(r),M) = 0 for n ≥ 2. Show that if r is a zero divisor then

TorRn (R/(r),M) ∼= TorRn−2(R[r],M)

for n ≥ 3, where R[r] = {s ∈ R|rs = 0}. [Hint: Look at the exact sequence 0 → R[r] → R → R →
R/(r)→ 0.]

Proof. Consider R
×r−→ R with kernel R[r] and cokernel R/(r). Get two exact sequences 0 → R[r] →

R→ R/R[r]→ 0 and 0→ (r)→ R→ R/(r)→ 0 with R/R[r] = (r) by the first isomorphism theorem.
The middle modules are free in both cases so dimension shifting (applied twice) yields

Torn(R/(r),M) ∼= Torn−1((r),M) ∼= Torn−1(R/R[r],M) ∼= Torn−2(R[r],M)
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3. Let R be a commutative ring. Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of R-modules.
If M ′ and M ′′ are flat/injective/projective show that M is flat/injective/projective. [Hint: Use the
derived functor criterion for flat/injective/projective.]

Proof. If N is any module then the long exact sequence yields

Tor1(M ′, N)→ Tor1(M,N)→ Tor1(M ′′, N)

and if M ′ and M ′′ are flat then the outside Tors vanish and so Tor1(M,N) = 0 for all N . Thus M is
flat.

Similarly get
Ext1R(N,M ′)→ Ext1r(N,M)→ Ext1R(N,M ′′)

and
Ext1R(M ′′, N)→ Ext1r(M,N)→ Ext1R(M ′, N)

If M ′ and M ′′ are projective/injective then the outside Exts in the second/first sequence vanish and
thus the middle Ext vanishes in the second/first sequence. Since this is true for all N we deduce that
M is also projective/injective.

4. Let R be a commutatve ring and S a commutative R-algebra. Recall that you showed that DerR(S,−)
is a covariant functor from S-modules to sets.

(a) * For r ∈ R and d ∈ DerR(S,M) show that d(r) = 0.

(b) Consider S ⊗R S as a ring with respect to coordinate-wise multiplication (i.e., (a⊗ b) · (a′⊗ b′) =
(aa′) ⊗ (bb′)) and as an S-module with respect to s · (a ⊗ b) = (sa) ⊗ b. Let I be the kernel of
the multiplication S-module homomorphism S ⊗R S → S and let ΩS/R = I/I2 as an S-module.
Define D : S → ΩS/R sending s ∈ S to s⊗ 1− 1⊗ s. Show that D ∈ DerR(S,ΩS/R).

(c) * Let M be an S-module. Show that S ∗M defined as the abelian group S ⊕M together with
multiplication (s,m) ·(s′,m′) = (ss′, sm′+s′m) is an S-algebra which contains M via m 7→ (0,m)
as a sub-S-module.

(d) Let M be as above and d ∈ DerR(S,M). Show that there exists an S-algebra homomorphism
φ : S ⊗R S → S ∗M such that φ(x ⊗ y) = (xy, xd(y)); show that this homomorphism factors
through an S-module homomorphism I/I2 →M .

(e) * Deduce that the functor DerR(S,−) is represented by the S-module ΩS/R.

Proof. (a): The map d is R-linear and so d(r) = rd(1) but d(r) = d(r ·1) = d(r)+rd(1) and so d(r) = 0
for all r ∈ R.

(b): First note that if s ∈ S then indeed D(s) ∈ I since s · 1− 1 · s = 0.

For x, y ∈ S we compute

xD(y) + yD(x) = x(y ⊗ 1− 1⊗ y) + y(x⊗ 1− 1⊗ x)

= (xy)⊗ 1− x⊗ y + (yx)⊗ 1− y ⊗ x
= D(xy) + (yx)⊗ 1 + 1⊗ (xy)− x⊗ y − y ⊗ x
= D(xy) + (y ⊗ 1− 1⊗ y)(x⊗ 1− 1⊗ x)

= D(xy) +D(x)D(y)

≡ D(xy) (mod I2)

as D(x), D(y) ∈ I. Since ΩS/R = I/I2 we get xD(y) + yD(x) = D(xy).
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(c): First, (1, 0) · (s,m) = (s,m). Next, (a + b,m + n) · (s, p) = ((a + b)s, (a + b)p + s(m + n)) =
(as, ap+ sm) + (bs, bp+ sn) which yields distributivity. For associativity we check that

(a,m) · ((b, n) · (c, p)) = (a,m) · (bc, bp+ cn)

= (abc, a(bp+ cn) + bcm)

= (ab, an+ bm) · (c, p)
= ((a,m) · (b, n)) · (c, p)

The ring S ∗M contains S via s 7→ (s, 0) which gives it the structure of an S-algebra.

Finally, (s, 0) · (0,m) = (0, sm) and so M inside S ∗M is a sub-S-module isomorphic to the S-module
M .

(d): Define φ(
∑
xi⊗ yi) =

∑
xid(yi). We only need to check that this yields and S-algebra homomor-

phism, i.e., that
φ((x⊗ y) · (x′ ⊗ y′)) = φ(x⊗ y)φ(x′ ⊗ y′)

But

φ((x⊗ y) · (x′ ⊗ y′)) = φ((xx′)⊗ (yy′))

= (xx′yy′, xx′d(yy′))

= (xx′yy′, xx′yd(y′) + xx′y′d(y))

= (xy, xd(y)) · (x′y′, x′d(y′))

= φ(x⊗ y)φ(x′ ⊗ y′)

Note that the image of I under φ lands in the image ofM in S∗M since φ(
∑
xi⊗yi) = (

∑
xiyi,

∑
xid(yi))

and
∑
xiyi = 0 for

∑
xi ⊗ yi ∈ I by definition. Thus we get φ : I → M . Finally, it suffices to check

that φ(I2) = 0 to conclude that φ factors through I/I2 → M . But φ is a ring-homomorphism so
φ(I2) = φ(I)2 ⊂M ·M = 0 since (0,m) · (0, n) = (0, 0).

(e): We show that DerR(S,−) is represented by ΩS/R and D ∈ DerR(S,ΩS/R). We need to check that
for each S-module M we have a bijection

HomS(OS/R,M)→ DerR(S,M)

φ 7→ φ ◦D

The map LHS to RHS makes sense since DerR(S,−) is a functor. For surjectivity take d ∈ DerR(S,M).
Then part (d) yields φd : ΩS/R →M in the LHS for which

φ ◦D(s) = φ(s⊗ 1− 1⊗ s) = (s, sd(1))− (s, d(s)) = (s, 0)− (s, d(s)) = (0,−d(s))

so φ ◦D = −d which gives surjectivity.

Finally, for injectivity, suppose that φ ◦D = φ′ ◦D. Then (φ− φ′) ◦D = 0 so it’s enough to show that
if φ ◦D = 0 then φ = 0. Note that∑

xi ⊗ yi = (
∑

xiyi)⊗ 1−
∑

xiD(yi)

and so if
∑
xi ⊗ yi ∈ I then

∑
xi ⊗ yi = −

∑
xiD(yi). But then

φ(
∑

xi ⊗ yi) = −
∑

φ(xiD(yi)) = −
∑

xiφ(D(yi)) = 0

as desired.
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