Graduate Algebra Homework 5

Due 2015-02-25

1. Consider the ideal $I=(x, y) \subset R=\mathbb{C}[x, y]$ and \mathbb{C} as the R-module R / I.
(a) Show that $\operatorname{Tor}_{1}^{R}(I, \mathbb{C}) \cong \operatorname{Tor}_{2}^{R}(\mathbb{C}, \mathbb{C})$.
(b) Find a projective resolution of \mathbb{C}. [Hint: Use the algorithm from class.]
(c) Show that I is not flat over R. [Hint: Use (a) and (b).]
(d) (Optional) Find the kernel of the multiplication map $I \otimes_{R} I \rightarrow I$ as a submodule of $I \otimes_{R} I$.

Proof. (a): Consider the exact sequence $0 \rightarrow I \rightarrow R \rightarrow R / I \rightarrow 0$ with R in the middle projective. Then dimension shifting gives the desired isomorphism.
(b): Follow, roughly, the algorithm from class. Have $0 \rightarrow I \rightarrow R \rightarrow R / I \rightarrow 0$ but I is not projective. However, there is a surjection $R^{2} \rightarrow I \rightarrow 0$ sending $(a, b) \mapsto a x+b y$. The kernel consists of (a, b) such that $a x=-b y$ in which case $a=c y$ and $b=-c x$ since $\mathbb{C}[x, y]$ is a UFD. Thus the kernel is isomorphic to R and so $0 \rightarrow R \xrightarrow{c \mapsto(c y,-c x)} R^{2} \xrightarrow{(a, b) \mapsto a x+b y} R \rightarrow R / I \rightarrow 0$ is an exact sequence with free and therefore projective modules.
(c): Note that

$$
\begin{aligned}
\operatorname{Tor}_{1}(I . \mathbb{C}) & \cong \operatorname{Tor}_{2}(\mathbb{C}, \mathbb{C}) \\
& \cong H^{2}\left(0 \rightarrow R \otimes_{R} \mathbb{C} \rightarrow R^{2} \otimes_{R} \mathbb{C} \rightarrow R \otimes_{R} \mathbb{C}\right) \\
& =\operatorname{ker}\left(R \otimes_{R} \mathbb{C} \rightarrow R^{2} \otimes_{R} \mathbb{C}\right) \\
& =R \otimes_{R} \mathbb{C} \\
& =\mathbb{C}
\end{aligned}
$$

since the map $c \otimes z \mapsto(c y,-c x) \otimes z=c \otimes y z-c \otimes x z=0$ as x, y are 0 in $\mathbb{C}=R / I$. Thus I is not flat. (d): We know that $\operatorname{Tor}_{1}(I, \mathbb{C})=\operatorname{Tor}_{1}(I, R / I)=\operatorname{ker}\left(I \otimes_{R} I \rightarrow I\right)$ and this is isomorphic to \mathbb{C}. Note that $x \otimes y-y \otimes x$ is in the kernel and thus the kernel is $\mathbb{C}(x \otimes y-y \otimes x)$.
2. Suppose R is a commutative ring and $r \in R$. When r is not a zero divisor we saw in class that $\operatorname{Tor}_{1}^{R}(R /(r), M) \cong M[r]$ and $\operatorname{Tor}_{n}^{R}(R /(r), M)=0$ for $n \geq 2$. Show that if r is a zero divisor then

$$
\operatorname{Tor}_{n}^{R}(R /(r), M) \cong \operatorname{Tor}_{n-2}^{R}(R[r], M)
$$

for $n \geq 3$, where $R[r]=\{s \in R \mid r s=0\}$. [Hint: Look at the exact sequence $0 \rightarrow R[r] \rightarrow R \rightarrow R \rightarrow$ $R /(r) \rightarrow 0$.]

Proof. Consider $R \xrightarrow{\times r} R$ with kernel $R[r]$ and cokernel $R /(r)$. Get two exact sequences $0 \rightarrow R[r] \rightarrow$ $R \rightarrow R / R[r] \rightarrow 0$ and $0 \rightarrow(r) \rightarrow R \rightarrow R /(r) \rightarrow 0$ with $R / R[r]=(r)$ by the first isomorphism theorem. The middle modules are free in both cases so dimension shifting (applied twice) yields

$$
\operatorname{Tor}_{n}(R /(r), M) \cong \operatorname{Tor}_{n-1}((r), M) \cong \operatorname{Tor}_{n-1}(R / R[r], M) \cong \operatorname{Tor}_{n-2}(R[r], M)
$$

3. Let R be a commutative ring. Let $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ be an exact sequence of R-modules. If M^{\prime} and $M^{\prime \prime}$ are flat/injective/projective show that M is flat/injective/projective. [Hint: Use the derived functor criterion for flat/injective/projective.]

Proof. If N is any module then the long exact sequence yields

$$
\operatorname{Tor}_{1}\left(M^{\prime}, N\right) \rightarrow \operatorname{Tor}_{1}(M, N) \rightarrow \operatorname{Tor}_{1}\left(M^{\prime \prime}, N\right)
$$

and if M^{\prime} and $M^{\prime \prime}$ are flat then the outside Tors vanish and so $\operatorname{Tor}_{1}(M, N)=0$ for all N. Thus M is flat.
Similarly get

$$
\operatorname{Ext}_{R}^{1}\left(N, M^{\prime}\right) \rightarrow \operatorname{Ext}_{r}^{1}(N, M) \rightarrow \operatorname{Ext}_{R}^{1}\left(N, M^{\prime \prime}\right)
$$

and

$$
\operatorname{Ext}_{R}^{1}\left(M^{\prime \prime}, N\right) \rightarrow \operatorname{Ext}_{r}^{1}(M, N) \rightarrow \operatorname{Ext}_{R}^{1}\left(M^{\prime}, N\right)
$$

If M^{\prime} and $M^{\prime \prime}$ are projective/injective then the outside Exts in the second/first sequence vanish and thus the middle Ext vanishes in the second/first sequence. Since this is true for all N we deduce that M is also projective/injective.
4. Let R be a commutatve ring and S a commutative R-algebra. Recall that you showed that $\operatorname{Der}_{R}(S,-)$ is a covariant functor from S-modules to sets.
(a) $*$ For $r \in R$ and $d \in \operatorname{Der}_{R}(S, M)$ show that $d(r)=0$.
(b) Consider $S \otimes_{R} S$ as a ring with respect to coordinate-wise multiplication (i.e., $(a \otimes b) \cdot\left(a^{\prime} \otimes b^{\prime}\right)=$ $\left.\left(a a^{\prime}\right) \otimes\left(b b^{\prime}\right)\right)$ and as an S-module with respect to $s \cdot(a \otimes b)=(s a) \otimes b$. Let I be the kernel of the multiplication S-module homomorphism $S \otimes_{R} S \rightarrow S$ and let $\Omega_{S / R}=I / I^{2}$ as an S-module. Define $D: S \rightarrow \Omega_{S / R}$ sending $s \in S$ to $s \otimes 1-1 \otimes s$. Show that $D \in \operatorname{Der}_{R}\left(S, \Omega_{S / R}\right)$.
(c) * Let M be an S-module. Show that $S * M$ defined as the abelian group $S \oplus M$ together with multiplication $(s, m) \cdot\left(s^{\prime}, m^{\prime}\right)=\left(s s^{\prime}, s m^{\prime}+s^{\prime} m\right)$ is an S-algebra which contains M via $m \mapsto(0, m)$ as a sub- S-module.
(d) Let M be as above and $d \in \operatorname{Der}_{R}(S, M)$. Show that there exists an S-algebra homomorphism $\phi: S \otimes_{R} S \rightarrow S * M$ such that $\phi(x \otimes y)=(x y, x d(y))$; show that this homomorphism factors through an S-module homomorphism $I / I^{2} \rightarrow M$.
(e) * Deduce that the functor $\operatorname{Der}_{R}(S,-)$ is represented by the S-module $\Omega_{S / R}$.

Proof. (a): The map d is R-linear and so $d(r)=r d(1)$ but $d(r)=d(r \cdot 1)=d(r)+r d(1)$ and so $d(r)=0$ for all $r \in R$.
(b): First note that if $s \in S$ then indeed $D(s) \in I$ since $s \cdot 1-1 \cdot s=0$.

For $x, y \in S$ we compute

$$
\begin{aligned}
x D(y)+y D(x) & =x(y \otimes 1-1 \otimes y)+y(x \otimes 1-1 \otimes x) \\
& =(x y) \otimes 1-x \otimes y+(y x) \otimes 1-y \otimes x \\
& =D(x y)+(y x) \otimes 1+1 \otimes(x y)-x \otimes y-y \otimes x \\
& =D(x y)+(y \otimes 1-1 \otimes y)(x \otimes 1-1 \otimes x) \\
& =D(x y)+D(x) D(y) \\
& \equiv D(x y) \quad\left(\bmod I^{2}\right)
\end{aligned}
$$

as $D(x), D(y) \in I$. Since $\Omega_{S / R}=I / I^{2}$ we get $x D(y)+y D(x)=D(x y)$.
(c): First, $(1,0) \cdot(s, m)=(s, m)$. Next, $(a+b, m+n) \cdot(s, p)=((a+b) s,(a+b) p+s(m+n))=$ $(a s, a p+s m)+(b s, b p+s n)$ which yields distributivity. For associativity we check that

$$
\begin{aligned}
(a, m) \cdot((b, n) \cdot(c, p)) & =(a, m) \cdot(b c, b p+c n) \\
& =(a b c, a(b p+c n)+b c m) \\
& =(a b, a n+b m) \cdot(c, p) \\
& =((a, m) \cdot(b, n)) \cdot(c, p)
\end{aligned}
$$

The ring $S * M$ contains S via $s \mapsto(s, 0)$ which gives it the structure of an S-algebra.
Finally, $(s, 0) \cdot(0, m)=(0, s m)$ and so M inside $S * M$ is a sub- S-module isomorphic to the S-module M.
(d): Define $\phi\left(\sum x_{i} \otimes y_{i}\right)=\sum x_{i} d\left(y_{i}\right)$. We only need to check that this yields and S-algebra homomorphism, i.e., that

$$
\phi\left((x \otimes y) \cdot\left(x^{\prime} \otimes y^{\prime}\right)\right)=\phi(x \otimes y) \phi\left(x^{\prime} \otimes y^{\prime}\right)
$$

But

$$
\begin{aligned}
\phi\left((x \otimes y) \cdot\left(x^{\prime} \otimes y^{\prime}\right)\right) & =\phi\left(\left(x x^{\prime}\right) \otimes\left(y y^{\prime}\right)\right) \\
& =\left(x x^{\prime} y y^{\prime}, x x^{\prime} d\left(y y^{\prime}\right)\right) \\
& =\left(x x^{\prime} y y^{\prime}, x x^{\prime} y d\left(y^{\prime}\right)+x x^{\prime} y^{\prime} d(y)\right) \\
& =(x y, x d(y)) \cdot\left(x^{\prime} y^{\prime}, x^{\prime} d\left(y^{\prime}\right)\right) \\
& =\phi(x \otimes y) \phi\left(x^{\prime} \otimes y^{\prime}\right)
\end{aligned}
$$

Note that the image of I under ϕ lands in the image of M in $S * M$ since $\phi\left(\sum x_{i} \otimes y_{i}\right)=\left(\sum x_{i} y_{i}, \sum x_{i} d\left(y_{i}\right)\right)$ and $\sum x_{i} y_{i}=0$ for $\sum x_{i} \otimes y_{i} \in I$ by definition. Thus we get $\phi: I \rightarrow M$. Finally, it suffices to check that $\phi\left(I^{2}\right)=0$ to conclude that ϕ factors through $I / I^{2} \rightarrow M$. But ϕ is a ring-homomorphism so $\phi\left(I^{2}\right)=\phi(I)^{2} \subset M \cdot M=0$ since $(0, m) \cdot(0, n)=(0,0)$.
(e): We show that $\operatorname{Der}_{R}(S,-)$ is represented by $\Omega_{S / R}$ and $D \in \operatorname{Der}_{R}\left(S, \Omega_{S / R}\right)$. We need to check that for each S-module M we have a bijection

$$
\begin{aligned}
\operatorname{Hom}_{S}\left(\mathcal{O}_{S / R}, M\right) & \rightarrow \operatorname{Der}_{R}(S, M) \\
\phi & \mapsto \phi \circ D
\end{aligned}
$$

The map LHS to RHS makes sense since $\operatorname{Der}_{R}(S,-)$ is a functor. For surjectivity take $d \in \operatorname{Der}_{R}(S, M)$. Then part (d) yields $\phi_{d}: \Omega_{S / R} \rightarrow M$ in the LHS for which

$$
\phi \circ D(s)=\phi(s \otimes 1-1 \otimes s)=(s, s d(1))-(s, d(s))=(s, 0)-(s, d(s))=(0,-d(s))
$$

so $\phi \circ D=-d$ which gives surjectivity.
Finally, for injectivity, suppose that $\phi \circ D=\phi^{\prime} \circ D$. Then $\left(\phi-\phi^{\prime}\right) \circ D=0$ so it's enough to show that if $\phi \circ D=0$ then $\phi=0$. Note that

$$
\sum x_{i} \otimes y_{i}=\left(\sum x_{i} y_{i}\right) \otimes 1-\sum x_{i} D\left(y_{i}\right)
$$

and so if $\sum x_{i} \otimes y_{i} \in I$ then $\sum x_{i} \otimes y_{i}=-\sum x_{i} D\left(y_{i}\right)$. But then

$$
\phi\left(\sum x_{i} \otimes y_{i}\right)=-\sum \phi\left(x_{i} D\left(y_{i}\right)\right)=-\sum x_{i} \phi\left(D\left(y_{i}\right)\right)=0
$$

as desired.

