Graduate Algebra Homework 6

Due 2015-03-04

- 1. Let $n \geq 2$. For a ring R define GL(n, R) as the set of $n \times n$ matrices M such that M^{-1} is also in $M_{n \times n}(R)$.
 - (a) Show that $\operatorname{GL}(n, R) = \{g \in M_{n \times n}(R) | \det(M) \in R^{\times} \}.$
 - (b) Show that GL(n, -) yields a covariant functor from the category of rings (with morphisms taking 1 to 1) to the category of sets.
 - (c) Show that $\operatorname{GL}(n, -)$ is representable.
- 2. (a) Suppose L/K is a field extension such that L has p^n elements and K has p^m elements. Show that $m \mid n$.
 - (b) Suppose $K = \mathbb{Q}(\alpha_1, \ldots, \alpha_n)$ where $\alpha_i^2 \in \mathbb{Q}$ for $1 \le i \le n$. Show that $\sqrt[3]{2} \notin K$. [Hint: The degree is multiplicative in towers of extensions.]
- 3. In each of the following examples you are given a polynomial $P(X) \in K[X]$ over some field K. In each case find the splitting field of P over K as well as the degree over K of the splitting field. The letter p denotes a prime number.
 - (a) $X^p 2 \in \mathbb{Q}[X].$
 - (b) $X^{p-1} t \in \mathbb{F}_p(t)[X]$ for p > 2.
 - (c) $X^4 + X^2 + 1 \in \mathbb{Q}[X].$
 - (d) $X^n t 1 \in \mathbb{C}((t))[X]$. Here $\mathbb{C}((t))$ is the fraction field of $\mathbb{C}[t]$ consisting of Laurent series.
- 4. Let K be a field and K(x) be the field of rational functions with coefficients in K. Let $P(x), Q(x) \in K[x]$ be two coprime polynomials and $t = P/Q \in K(x)$.
 - (a) Show that $P(X) tQ(X) \in K(t)[X]$ is irreducible and has X = x as a root. [Hint: Use Gauss' lemma and the fact that K[X][t] = K[t][X].]
 - (b) Conclude that $[K(x): K(t)] = \max(\deg(P), \deg(Q)).$
- 5. Suppose L/K is a finite extension of fields and $K \subset M_1, M_2 \subset L$ are two subextensions. Show that $M_1 \otimes_K M_2$ is a field if and only if $[M_1M_2:K] = [M_1:K][M_2:K]$. [Hint: Look at the multiplication map $M_1 \otimes_K M_2 \to M_1M_2$.]