Graduate Algebra Homework 6

Due 2015-03-04

1. Let $n \geq 2$. For a ring R define $\mathrm{GL}(n, R)$ as the set of $n \times n$ matrices M such that M^{-1} is also in $M_{n \times n}(R)$.
(a) Show that $\mathrm{GL}(n, R)=\left\{g \in M_{n \times n}(R) \mid \operatorname{det}(M) \in R^{\times}\right\}$.
(b) Show that GL $(n,-)$ yields a covariant functor from the category of rings (with morphisms taking 1 to 1) to the category of sets.
(c) Show that $\mathrm{GL}(n,-)$ is representable.
2. (a) Suppose L / K is a field extension such that L has p^{n} elements and K has p^{m} elements. Show that $m \mid n$.
(b) Suppose $K=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ where $\alpha_{i}^{2} \in \mathbb{Q}$ for $1 \leq i \leq n$. Show that $\sqrt[3]{2} \notin K$. [Hint: The degree is multiplicative in towers of extensions.]
3. In each of the following examples you are given a polynomial $P(X) \in K[X]$ over some field K. In each case find the splitting field of P over K as well as the degree over K of the splitting field. The letter p denotes a prime number.
(a) $X^{p}-2 \in \mathbb{Q}[X]$.
(b) $X^{p-1}-t \in \mathbb{F}_{p}(t)[X]$ for $p>2$.
(c) $X^{4}+X^{2}+1 \in \mathbb{Q}[X]$.
(d) $X^{n}-t-1 \in \mathbb{C}((t))[X]$. Here $\mathbb{C}((t))$ is the fraction field of $\mathbb{C} \llbracket t \rrbracket$ consisting of Laurent series.
4. Let K be a field and $K(x)$ be the field of rational functions with coefficients in K. Let $P(x), Q(x) \in K[x]$ be two coprime polynomials and $t=P / Q \in K(x)$.
(a) Show that $P(X)-t Q(X) \in K(t)[X]$ is irreducible and has $X=x$ as a root. [Hint: Use Gauss' lemma and the fact that $K[X][t]=K[t][X]$.
(b) Conclude that $[K(x): K(t)]=\max (\operatorname{deg}(P), \operatorname{deg}(Q))$.
5. Suppose L / K is a finite extension of fields and $K \subset M_{1}, M_{2} \subset L$ are two subextensions. Show that $M_{1} \otimes_{K} M_{2}$ is a field if and only if $\left[M_{1} M_{2}: K\right]=\left[M_{1}: K\right]\left[M_{2}: K\right]$. [Hint: Look at the multiplication $\left.\operatorname{map} M_{1} \otimes_{K} M_{2} \rightarrow M_{1} M_{2}.\right]$
