Graduate Algebra Homework 6

Due 2015-03-04

1. Let $n \geq 2$. For a ring R define $\mathrm{GL}(n, R)$ as the set of $n \times n$ matrices M such that M^{-1} is also in $M_{n \times n}(R)$.
(a) Show that $\mathrm{GL}(n, R)=\left\{g \in M_{n \times n}(R) \mid \operatorname{det}(M) \in R^{\times}\right\}$.
(b) Show that GL $(n,-)$ yields a covariant functor from the category of rings (with morphisms taking 1 to 1) to the category of sets.
(c) Show that $\operatorname{GL}(n,-)$ is representable.

Proof. (1): We know from lectures that a linear map is invertible iff its determinant is invertible.
(2): Suppose $f: R \rightarrow S$ is a ring homomorphism. Define $f: \operatorname{GL}(n, R) \rightarrow \operatorname{GL}(n, S)$ by $f\left(\left(a_{i, j}\right)\right)=$ $\left(f\left(a_{i, j}\right)\right)$. Since f is a homomorphism we deduce that $\operatorname{det}\left(f\left(\left(a_{i, j}\right)\right)\right)=f\left(\operatorname{det}\left(\left(a_{i, j}\right)\right)\right.$ and so f takes invertible matrices to invertible matrices because $f: R^{\times} \rightarrow S^{\times}$. Note that GL $(n,-)$ respects compositions by definition and the identity yields the identity.
(3): Let $R=\mathbb{Z}\left[x_{i, j} \mid 1 \leq i, j \leq n\right][y] /\left(y \operatorname{det}\left(\left(x_{i, j}\right)\right)-1\right)$ and $M=\left(x_{i, j}\right)$. Since $y \operatorname{det} M=1$ it follows that $\operatorname{det} M \in R^{\times}$so $M \in \operatorname{GL}(n, R)$. I'll show that $\mathrm{GL}(n,-)$ is represented by R, M. If S is any ring we need to show that

$$
\operatorname{Hom}(R, S) \cong \mathrm{GL}(n, S)
$$

is a bijection via $f \mapsto f(M)$. First, if $N \in \operatorname{GL}(n, S)$ is any matrix define $f: \mathbb{Z}\left[x_{i, j} \mid i, j\right] \rightarrow S$ by $f\left(x_{i, j}\right)=n_{i, j}$ which can always be done. Next, since $f\left(\operatorname{det}\left(\left(x_{i, j}\right)\right)\right)=\operatorname{det}(N) \in S^{\times}$it follows that f factors through the localization $\mathbb{Z}\left[x_{i, j}\right]_{\operatorname{det}\left(\left(x_{i, j}\right)\right)} \cong R$. This proves surjectivity of the map.
For injectivity, suppose $f, g: R \rightarrow S$ yield the same matrix. Then $f\left(x_{i, j}\right)=g\left(x_{i, j}\right)$ and so necessarily $f(y)=g(y)$ is the inverse of $\operatorname{det}\left(f\left(x_{i, j}\right)\right)=\operatorname{det}\left(g\left(x_{i, j}\right)\right)$. Since R is generated by $x_{i, j}$ and y it follows that $f=g$.
2. (a) Suppose L / K is a field extension such that L has p^{n} elements and K has p^{m} elements. Show that $m \mid n$.
(b) Suppose $K=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ where $\alpha_{i}^{2} \in \mathbb{Q}$ for $1 \leq i \leq n$. Show that $\sqrt[3]{2} \notin K$. [Hint: The degree is multiplicative in towers of extensions.]

Proof. (1): Let $d=[L: K]$. Then $L \cong K^{d}$ and counting we get $p^{n}=\left(p^{m}\right)^{d}$ so $m \mid n$.
(2): We'll show by induction that if $K_{n}=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right) / \mathbb{Q}$ then $\left[K_{n}: \mathbb{Q}\right] \mid 2^{n}$. The base case is trivial $K_{0}=\mathbb{Q}$. Next, $K_{n}=K_{n-1}\left(\sqrt{\alpha_{n}}\right)$ which has minimal polynomial either linear or quadratic over K_{n-1}. Thus $\left[K_{n}: K_{n-1}\right] \mid 2$ and so $\left[K_{n}: \mathbb{Q}\right] \mid 2^{n}$. Finally, if $\sqrt[3]{2} \in K_{n}$ then $\left[K_{n}: \mathbb{Q}\right]=\left[K_{n}: \mathbb{Q}(\sqrt[3]{2})\right][\mathbb{Q}(\sqrt[3]{2})$: $\mathbb{Q}]$ is divisible by 3 which cannot happen.
3. In each of the following examples you are given a polynomial $P(X) \in K[X]$ over some field K. In each case find the splitting field of P over K as well as the degree over K of the splitting field. The letter p denotes a prime number.
(a) $X^{p}-2 \in \mathbb{Q}[X]$.
(b) $X^{p-1}-t \in \mathbb{F}_{p}(t)[X]$ for $p>2$.
(c) $X^{4}+X^{2}+1 \in \mathbb{Q}[X]$.
(d) $X^{n}-t-1 \in \mathbb{C}((t))[X]$. Here $\mathbb{C}((t))$ is the fraction field of $\mathbb{C} \llbracket t \rrbracket$ consisting of Laurent series.

Proof. (1): The splitting field must contain all $\zeta_{p}^{k} \sqrt[p]{2}$ for $0 \leq k<p$. But then it must contain $\sqrt[p]{2}$ and ζ_{p} and immediately the splitting field is $K=\mathbb{Q}\left(\sqrt[p]{2}, \zeta_{p}\right)$. Note that K is the composite of $\mathbb{Q}(\sqrt[p]{2})$ of degree p over \mathbb{Q} and $\mathbb{Q}\left(\zeta_{p}\right)$ of degree $p-1$ over \mathbb{Q} (because the minimal polynomial of ζ_{p} is $X^{p-1}+\cdots+1$ which is irreducible over \mathbb{Q}). Since the two degrees are coprime the composite has degree the product $p(p-1)$.
(2): Let $K=\mathbb{F}_{p}(\sqrt[p-1]{t})$. I claim that K is the splitting field. Note that \mathbb{F}_{p}^{\times}is cyclic (proved last semester) and so every $(p-1)$-th root of unity is in \mathbb{F}_{p}. Thus K contains all the roots of $X^{p-1}-t$ and in fact $X^{p-1}-t=\prod_{i=1}^{p-1}(X-i \sqrt[p-1]{t})$. For the degree $\left[K: \mathbb{F}_{p}(t)\right]=p-1$ the degree of the minimal polynomial.
(3): $X^{4}+X^{2}+1=\left(X^{2}+1\right)-X^{2}=\left(X^{2}+X+1\right)\left(X^{2}-X+1\right)$. The splitting field is the composite of the splitting fields of the two polynomials, namely $\mathbb{Q}(\sqrt{5})$ and $\mathbb{Q}(\sqrt{-5})$. This splitting field is $\mathbb{Q}(i, \sqrt{5})$. It's degree is 4 because the basis $1, \sqrt{5}$ of $\mathbb{Q}(\sqrt{5})$ is independent over $\mathbb{Q}(i)$.
(4): Note that the roots are $\zeta_{n}^{k} \sqrt[n]{1+t}=\zeta_{n}^{k} \sum_{m \geq 0}\binom{1 / n}{m} t^{m} \in \mathbb{C}((t))$ so the splitting field is $\mathbb{C}((t))$.
4. Let K be a field and $K(x)$ be the field of rational functions with coefficients in K. Let $P(x), Q(x) \in K[x]$ be two coprime polynomials and $t=P / Q \in K(x)$.
(a) Show that $P(X)-t Q(X) \in K(t)[X]$ is irreducible and has $X=x$ as a root. [Hint: Use Gauss' lemma and the fact that $K[X][t]=K[t][X]$.]
(b) Conclude that $[K(x): K(t)]=\max (\operatorname{deg}(P), \operatorname{deg}(Q))$.

Proof. (1): Gauss' lemma says that $P(X)-t Q(X)$ is irreducible over $K(t)$ iff it is irreducible over $K[t]$. If it's reducible over $K[t][X]$ then it's also reducible over $K[X][t]=K[t][X]$. But it is linear in X and so the only way to be reducible is if $P(X)-t Q(X)$ is divisible by a polynomial in X. But this contradicts that P and Q are coprime. Finally, $P(x)-t Q(x)=0$ by definition of t.
(2): The minimal polynomial of x over $K(t)$ is the irreducible polynomial $P(X)-t Q(X)$ of degree $\max (\operatorname{deg} P, \operatorname{deg} Q)$. The same is therefore true of $[K(x): K(t)]$.
5. Suppose L / K is a finite extension of fields and $K \subset M_{1}, M_{2} \subset L$ are two subextensions. Show that $M_{1} \otimes_{K} M_{2}$ is a field if and only if $\left[M_{1} M_{2}: K\right]=\left[M_{1}: K\right]\left[M_{2}: K\right]$. [Hint: Look at the multiplication $\operatorname{map} M_{1} \otimes_{K} M_{2} \rightarrow M_{1} M_{2}$.]

Proof. Look at $m: M_{1} \otimes_{K} M_{2} \rightarrow M_{1} M_{2}$ given by $m\left(\sum x_{i} \otimes y_{i}\right)=\sum x_{i} y_{i}$. This is a homomorphism of K-modules. Defining $(x \otimes y) \cdot\left(x^{\prime} \otimes y^{\prime}\right)=\left(x x^{\prime}\right) \otimes\left(y y^{\prime}\right)$ we get a K-algebra structure on $M_{1} \otimes_{K} M_{2}$ and one can check that m is a K-algebra homomorphism which sends 1 to 1 .
If $M_{1} \otimes_{K} M_{2}$ is a field then m is a field homomorphism which is not trivial as it send 1 to 1 . Thus m is injective and so $\operatorname{dim}_{K} M_{1} \otimes_{K} M_{2} \leq \operatorname{dim}_{K} M_{1} M_{2}$. But LHS is $\left[M_{1}: K\right]\left[M_{2}: K\right]$ and the RHS is always $\leq\left[M_{1}: K\right]\left[M_{2}: K\right]$ from class. Thus equality occurs.
Suppose now that equality occurs. Elements of $M_{1} M_{2}$ are rational expressions in elements of M_{1} and M_{2}. Since $M_{1} M_{2} / K$ is finite these rational expressions are algebraic elements and therefore they are polynomial expressions in elements of M_{1} and M_{2}. Collecting terms we deduce that every element of $M_{1} M_{2}$ is of the form $\sum x_{i} y_{i}=m\left(\sum x_{i} \otimes y_{i}\right)$ for $x_{i} \in M_{1}$ and $y_{i} \in M_{2}$. Thus m is surjective. Since the LHS and RHS have equal dimension over K and m is a K-vector space surjective homomorphism we deduce it is an isomorphism and therefore $M_{1} \otimes_{K} M_{2} \cong M_{1} M_{2}$ is a field.

