
Graduate Algebra

Homework 6

Due 2015-03-04

1. Let n ≥ 2. For a ring R define GL(n,R) as the set of n × n matrices M such that M−1 is also in
Mn×n(R).

(a) Show that GL(n,R) = {g ∈Mn×n(R)|det(M) ∈ R×}.
(b) Show that GL(n,−) yields a covariant functor from the category of rings (with morphisms taking

1 to 1) to the category of sets.

(c) Show that GL(n,−) is representable.

Proof. (1): We know from lectures that a linear map is invertible iff its determinant is invertible.

(2): Suppose f : R → S is a ring homomorphism. Define f : GL(n,R) → GL(n, S) by f((ai,j)) =
(f(ai,j)). Since f is a homomorphism we deduce that det(f((ai,j))) = f(det((ai,j)) and so f takes
invertible matrices to invertible matrices because f : R× → S×. Note that GL(n,−) respects compo-
sitions by definition and the identity yields the identity.

(3): Let R = Z[xi,j |1 ≤ i, j ≤ n][y]/(y det((xi,j)) − 1) and M = (xi,j). Since y detM = 1 it follows
that detM ∈ R× so M ∈ GL(n,R). I’ll show that GL(n,−) is represented by R,M . If S is any ring
we need to show that

Hom(R,S) ∼= GL(n, S)

is a bijection via f 7→ f(M). First, if N ∈ GL(n, S) is any matrix define f : Z[xi,j |i, j] → S by
f(xi,j) = ni,j which can always be done. Next, since f(det((xi,j))) = det(N) ∈ S× it follows that f
factors through the localization Z[xi,j ]det((xi,j))

∼= R. This proves surjectivity of the map.

For injectivity, suppose f, g : R → S yield the same matrix. Then f(xi,j) = g(xi,j) and so necessarily
f(y) = g(y) is the inverse of det(f(xi,j)) = det(g(xi,j)). Since R is generated by xi,j and y it follows
that f = g.

2. (a) Suppose L/K is a field extension such that L has pn elements and K has pm elements. Show that
m | n.

(b) Suppose K = Q(α1, . . . , αn) where α2
i ∈ Q for 1 ≤ i ≤ n. Show that 3

√
2 /∈ K. [Hint: The degree

is multiplicative in towers of extensions.]

Proof. (1): Let d = [L : K]. Then L ∼= Kd and counting we get pn = (pm)d so m | n.

(2): We’ll show by induction that if Kn = Q(α1, . . . , αn)/Q then [Kn : Q] | 2n. The base case is trivial
K0 = Q. Next, Kn = Kn−1(

√
αn) which has minimal polynomial either linear or quadratic over Kn−1.

Thus [Kn : Kn−1] | 2 and so [Kn : Q] | 2n. Finally, if 3
√

2 ∈ Kn then [Kn : Q] = [Kn : Q( 3
√

2)][Q( 3
√

2) :
Q] is divisible by 3 which cannot happen.

3. In each of the following examples you are given a polynomial P (X) ∈ K[X] over some field K. In each
case find the splitting field of P over K as well as the degree over K of the splitting field. The letter
p denotes a prime number.
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(a) Xp − 2 ∈ Q[X].

(b) Xp−1 − t ∈ Fp(t)[X] for p > 2.

(c) X4 +X2 + 1 ∈ Q[X].

(d) Xn − t− 1 ∈ C((t))[X]. Here C((t)) is the fraction field of C[[t]] consisting of Laurent series.

Proof. (1): The splitting field must contain all ζkp
p
√

2 for 0 ≤ k < p. But then it must contain p
√

2 and

ζp and immediately the splitting field is K = Q( p
√

2, ζp). Note that K is the composite of Q( p
√

2) of
degree p over Q and Q(ζp) of degree p−1 over Q (because the minimal polynomial of ζp is Xp−1+· · ·+1
which is irreducible over Q). Since the two degrees are coprime the composite has degree the product
p(p− 1).

(2): Let K = Fp( p−1
√
t). I claim that K is the splitting field. Note that F×p is cyclic (proved last

semester) and so every (p− 1)-th root of unity is in Fp. Thus K contains all the roots of Xp−1− t and

in fact Xp−1 − t =
∏p−1

i=1 (X − i p−1
√
t). For the degree [K : Fp(t)] = p − 1 the degree of the minimal

polynomial.

(3): X4 +X2 + 1 = (X2 + 1)−X2 = (X2 +X+ 1)(X2−X+ 1). The splitting field is the composite of
the splitting fields of the two polynomials, namely Q(

√
5) and Q(

√
−5). This splitting field is Q(i,

√
5).

It’s degree is 4 because the basis 1,
√

5 of Q(
√

5) is independent over Q(i).

(4): Note that the roots are ζkn
n
√

1 + t = ζkn
∑

m≥0
(
1/n
m

)
tm ∈ C((t)) so the splitting field is C((t)).

4. LetK be a field andK(x) be the field of rational functions with coefficients inK. Let P (x), Q(x) ∈ K[x]
be two coprime polynomials and t = P/Q ∈ K(x).

(a) Show that P (X) − tQ(X) ∈ K(t)[X] is irreducible and has X = x as a root. [Hint: Use Gauss’
lemma and the fact that K[X][t] = K[t][X].]

(b) Conclude that [K(x) : K(t)] = max(deg(P ),deg(Q)).

Proof. (1): Gauss’ lemma says that P (X) − tQ(X) is irreducible over K(t) iff it is irreducible over
K[t]. If it’s reducible over K[t][X] then it’s also reducible over K[X][t] = K[t][X]. But it is linear in
X and so the only way to be reducible is if P (X)− tQ(X) is divisible by a polynomial in X. But this
contradicts that P and Q are coprime. Finally, P (x)− tQ(x) = 0 by definition of t.

(2): The minimal polynomial of x over K(t) is the irreducible polynomial P (X) − tQ(X) of degree
max(degP,degQ). The same is therefore true of [K(x) : K(t)].

5. Suppose L/K is a finite extension of fields and K ⊂ M1,M2 ⊂ L are two subextensions. Show that
M1 ⊗K M2 is a field if and only if [M1M2 : K] = [M1 : K][M2 : K]. [Hint: Look at the multiplication
map M1 ⊗K M2 →M1M2.]

Proof. Look at m : M1 ⊗K M2 → M1M2 given by m(
∑
xi ⊗ yi) =

∑
xiyi. This is a homomorphism

of K-modules. Defining (x⊗ y) · (x′ ⊗ y′) = (xx′)⊗ (yy′) we get a K-algebra structure on M1 ⊗K M2

and one can check that m is a K-algebra homomorphism which sends 1 to 1.

If M1 ⊗K M2 is a field then m is a field homomorphism which is not trivial as it send 1 to 1. Thus
m is injective and so dimK M1 ⊗K M2 ≤ dimK M1M2. But LHS is [M1 : K][M2 : K] and the RHS is
always ≤ [M1 : K][M2 : K] from class. Thus equality occurs.

Suppose now that equality occurs. Elements of M1M2 are rational expressions in elements of M1 and
M2. Since M1M2/K is finite these rational expressions are algebraic elements and therefore they are
polynomial expressions in elements of M1 and M2. Collecting terms we deduce that every element of
M1M2 is of the form

∑
xiyi = m(

∑
xi ⊗ yi) for xi ∈ M1 and yi ∈ M2. Thus m is surjective. Since

the LHS and RHS have equal dimension over K and m is a K-vector space surjective homomorphism
we deduce it is an isomorphism and therefore M1 ⊗K M2

∼= M1M2 is a field.
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