Graduate Algebra
Homework 6

Due 2015-03-04

1. Let n > 2. For a ring R define GL(n, R) as the set of n x n matrices M such that M~1! is also in
My xn(R).

(a) Show that GL(n, R) = {g € Mypxn(R)|det(M) € R*}.

(b) Show that GL(n, —) yields a covariant functor from the category of rings (with morphisms taking
1 to 1) to the category of sets.

(¢) Show that GL(n,—) is representable.

Proof. (1): We know from lectures that a linear map is invertible iff its determinant is invertible.

(2): Suppose f : R — S is a ring homomorphism. Define f : GL(n, R) — GL(n,S) by f((a:;)) =
(f(a;;)). Since f is a homomorphism we deduce that det(f((a;;))) = f(det((a;;)) and so f takes
invertible matrices to invertible matrices because f : R* — S*. Note that GL(n, —) respects compo-
sitions by definition and the identity yields the identity.

(3): Let R = Z[z; ;|11 < 4,5 < nlly]/(ydet((x;,;)) — 1) and M = (z; ;). Since ydet M = 1 it follows
that det M € R* so M € GL(n, R). I'll show that GL(n, —) is represented by R, M. If S is any ring

we need to show that
Hom(R, S) = GL(n, S)

is a bijection via f — f(M). First, if N € GL(n,S) is any matrix define f : Z[z; ;|i,5] — S by
f(z; ;) = n;; which can always be done. Next, since f(det((z;;))) = det(N) € S* it follows that f
factors through the localization Z[:L'iyj}det((”j)) =~ R. This proves surjectivity of the map.

For injectivity, suppose f,g : R — S yield the same matrix. Then f(x; ;) = g(z; ;) and so necessarily
f(y) = g(y) is the inverse of det(f(z; ,)) = det(g(xz; ;)). Since R is generated by z; ; and y it follows
that f = g. O

2. (a) Suppose L/K is a field extension such that L has p™ elements and K has p™ elements. Show that
m | n.
(b) Suppose K = Q(av, ..., a,) where a? € Q for 1 < i < n. Show that v/2 ¢ K. [Hint: The degree
is multiplicative in towers of extensions.|

Proof. (1): Let d = [L : K]. Then L = K% and counting we get p" = (p™)? so m | n.

(2): We'll show by induction that if K,, = Q(aq,...,a,)/Q then [K, : Q] | 2". The base case is trivial
Ky = Q. Next, K,, = K,,—1(y/ay,) which has minimal polynomial either linear or quadratic over K,,_;.
Thus [K,, : K,,—1] | 2 and so [K,, : Q] | 2". Finally, if V2 € K,, then (K, : Q] =[K,: Q(\g/i)][(@(\s/i) :
Q] is divisible by 3 which cannot happen. O

3. In each of the following examples you are given a polynomial P(X) € K[X] over some field K. In each
case find the splitting field of P over K as well as the degree over K of the splitting field. The letter
p denotes a prime number.



(a) XP -2 € Q[X].

(b) XP~1 —t € F,(¢)[X] for p > 2.

() X*+ X?+1€Q[X].

(d) X" —t—1eC(t)[X]. Here C((t)) is the fraction field of C[t] consisting of Laurent series.

Proof. (1): The splitting field must contain all C;f {/2 for 0 < k < p. But then it must contain /2 and
¢, and immediately the splitting field is K = Q({/2,(,). Note that K is the composite of Q({/2) of
degree p over Q and Q(¢,) of degree p—1 over Q (because the minimal polynomial of ¢, is X?~14---+1
which is irreducible over Q). Since the two degrees are coprime the composite has degree the product
p(p—1).

(2): Let K = Fp(?V/1). I claim that K is the splitting field. Note that F is cyclic (proved last
semester) and so every (p — 1)-th root of unity is in F,. Thus K contains all the roots of X?~! —¢ and
in fact XP~! —t = Hf;ll (X —i”%/t). For the degree [K : F,(t)] = p — 1 the degree of the minimal
polynomial.

(3): X4+ X2 +1=(X?+1)— X2 = (X?2+X+1)(X2— X +1). The splitting field is the composite of
the splitting fields of the two polynomials, namely Q(v/5) and Q(v/—5). This splitting field is Q(7, v/5).
It’s degree is 4 because the basis 1, /5 of Q(v/5) is independent over Q(i).

(4): Note that the roots are (¥ /1 + ¢ = ¢* Ym0 (1/”)tm € C((t)) so the splitting field is C((¢)). O

m

. Let K be afield and K (x) be the field of rational functions with coefficients in K. Let P(x), Q(z) € K|x]
be two coprime polynomials and t = P/Q € K(x).

(a) Show that P(X) —tQ(X) € K(t)[X] is irreducible and has X = x as a root. [Hint: Use Gauss’
lemma and the fact that K[X|[t] = K[t][X].]

(b) Conclude that [K(z) : K(t)] = max(deg(P),deg(Q)).

Proof. (1): Gauss’ lemma says that P(X) — tQ(X) is irreducible over K (¢) iff it is irreducible over
K|t]. If it’s reducible over K[t][X] then it’s also reducible over K[X][t] = K[t][X]. But it is linear in
X and so the only way to be reducible is if P(X) —¢Q(X) is divisible by a polynomial in X. But this
contradicts that P and @ are coprime. Finally, P(z) — tQ(z) = 0 by definition of ¢.

(2): The minimal polynomial of z over K (t) is the irreducible polynomial P(X) — tQ(X) of degree
max(deg P, deg ). The same is therefore true of [K(z) : K(t)]. O

. Suppose L/K is a finite extension of fields and K C M7, My C L are two subextensions. Show that
M; ®k Ms is a field if and only if [M; My : K| = [M; : K|[M> : K]. [Hint: Look at the multiplication
map M; Qg My — MlMg.]

Proof. Look at m : My @ x My — My Ms given by m(>_ z; ® y;) = > x;y;. This is a homomorphism
of K-modules. Defining (z ®@y) - (2’ @ y') = (z2') @ (yy') we get a K-algebra structure on M; ® g Mo
and one can check that m is a K-algebra homomorphism which sends 1 to 1.

If M ® M is a field then m is a field homomorphism which is not trivial as it send 1 to 1. Thus
m is injective and so dimyg My @ x My < dimg My Ms. But LHS is [M; : K][M; : K] and the RHS is
always < [M; : K][M> : K] from class. Thus equality occurs.

Suppose now that equality occurs. Elements of M; M, are rational expressions in elements of M; and
Ms. Since MM, /K is finite these rational expressions are algebraic elements and therefore they are
polynomial expressions in elements of M; and Ms. Collecting terms we deduce that every element of
M; My is of the form Y x;y; = m(d_x; Qy;) for x; € My and y; € Ms. Thus m is surjective. Since
the LHS and RHS have equal dimension over K and m is a K-vector space surjective homomorphism
we deduce it is an isomorphism and therefore My ® x Mo = My M> is a field. O



