Graduate Algebra Homework 6

Due 2015-03-04

- 1. Let $n \ge 2$. For a ring R define GL(n, R) as the set of $n \times n$ matrices M such that M^{-1} is also in $M_{n \times n}(R)$.
 - (a) Show that $\operatorname{GL}(n, R) = \{g \in M_{n \times n}(R) | \det(M) \in R^{\times} \}.$
 - (b) Show that GL(n, -) yields a covariant functor from the category of rings (with morphisms taking 1 to 1) to the category of sets.
 - (c) Show that GL(n, -) is representable.

Proof. (1): We know from lectures that a linear map is invertible iff its determinant is invertible.

(2): Suppose $f : R \to S$ is a ring homomorphism. Define $f : \operatorname{GL}(n, R) \to \operatorname{GL}(n, S)$ by $f((a_{i,j})) = (f(a_{i,j}))$. Since f is a homomorphism we deduce that $\det(f((a_{i,j}))) = f(\det((a_{i,j})))$ and so f takes invertible matrices to invertible matrices because $f : R^{\times} \to S^{\times}$. Note that $\operatorname{GL}(n, -)$ respects compositions by definition and the identity yields the identity.

(3): Let $R = \mathbb{Z}[x_{i,j}|1 \le i, j \le n][y]/(y \det((x_{i,j})) - 1)$ and $M = (x_{i,j})$. Since $y \det M = 1$ it follows that $\det M \in R^{\times}$ so $M \in \operatorname{GL}(n, R)$. I'll show that $\operatorname{GL}(n, -)$ is represented by R, M. If S is any ring we need to show that

$$\operatorname{Hom}(R,S) \cong \operatorname{GL}(n,S)$$

is a bijection via $f \mapsto f(M)$. First, if $N \in \operatorname{GL}(n, S)$ is any matrix define $f : \mathbb{Z}[x_{i,j}|i,j] \to S$ by $f(x_{i,j}) = n_{i,j}$ which can always be done. Next, since $f(\det((x_{i,j}))) = \det(N) \in S^{\times}$ it follows that f factors through the localization $\mathbb{Z}[x_{i,j}]_{\det((x_{i,j}))} \cong R$. This proves surjectivity of the map.

For injectivity, suppose $f, g: R \to S$ yield the same matrix. Then $f(x_{i,j}) = g(x_{i,j})$ and so necessarily f(y) = g(y) is the inverse of $\det(f(x_{i,j})) = \det(g(x_{i,j}))$. Since R is generated by $x_{i,j}$ and y it follows that f = g.

- 2. (a) Suppose L/K is a field extension such that L has p^n elements and K has p^m elements. Show that $m \mid n$.
 - (b) Suppose $K = \mathbb{Q}(\alpha_1, \ldots, \alpha_n)$ where $\alpha_i^2 \in \mathbb{Q}$ for $1 \le i \le n$. Show that $\sqrt[3]{2} \notin K$. [Hint: The degree is multiplicative in towers of extensions.]

Proof. (1): Let d = [L:K]. Then $L \cong K^d$ and counting we get $p^n = (p^m)^d$ so $m \mid n$.

(2): We'll show by induction that if $K_n = \mathbb{Q}(\alpha_1, \ldots, \alpha_n)/\mathbb{Q}$ then $[K_n : \mathbb{Q}] \mid 2^n$. The base case is trivial $K_0 = \mathbb{Q}$. Next, $K_n = K_{n-1}(\sqrt{\alpha_n})$ which has minimal polynomial either linear or quadratic over K_{n-1} . Thus $[K_n : K_{n-1}] \mid 2$ and so $[K_n : \mathbb{Q}] \mid 2^n$. Finally, if $\sqrt[3]{2} \in K_n$ then $[K_n : \mathbb{Q}] = [K_n : \mathbb{Q}(\sqrt[3]{2})][\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}]$ is divisible by 3 which cannot happen.

3. In each of the following examples you are given a polynomial $P(X) \in K[X]$ over some field K. In each case find the splitting field of P over K as well as the degree over K of the splitting field. The letter p denotes a prime number.

(a) $X^p - 2 \in \mathbb{Q}[X].$

- (b) $X^{p-1} t \in \mathbb{F}_p(t)[X]$ for p > 2.
- (c) $X^4 + X^2 + 1 \in \mathbb{Q}[X]$.
- (d) $X^n t 1 \in \mathbb{C}((t))[X]$. Here $\mathbb{C}((t))$ is the fraction field of $\mathbb{C}[t]$ consisting of Laurent series.

Proof. (1): The splitting field must contain all $\zeta_p^k \sqrt[p]{2}$ for $0 \leq k < p$. But then it must contain $\sqrt[p]{2}$ and ζ_p and immediately the splitting field is $K = \mathbb{Q}(\sqrt[p]{2}, \zeta_p)$. Note that K is the composite of $\mathbb{Q}(\sqrt[p]{2})$ of degree p over \mathbb{Q} and $\mathbb{Q}(\zeta_p)$ of degree p-1 over \mathbb{Q} (because the minimal polynomial of ζ_p is $X^{p-1} + \cdots + 1$ which is irreducible over \mathbb{Q}). Since the two degrees are coprime the composite has degree the product p(p-1).

(2): Let $K = \mathbb{F}_p(\sqrt[p-1]{t})$. I claim that K is the splitting field. Note that \mathbb{F}_p^{\times} is cyclic (proved last semester) and so every (p-1)-th root of unity is in \mathbb{F}_p . Thus K contains all the roots of $X^{p-1} - t$ and in fact $X^{p-1} - t = \prod_{i=1}^{p-1} (X - i \sqrt[p-1]{t})$. For the degree $[K : \mathbb{F}_p(t)] = p - 1$ the degree of the minimal polynomial.

(3): $X^4 + X^2 + 1 = (X^2 + 1) - X^2 = (X^2 + X + 1)(X^2 - X + 1)$. The splitting field is the composite of the splitting fields of the two polynomials, namely $\mathbb{Q}(\sqrt{5})$ and $\mathbb{Q}(\sqrt{-5})$. This splitting field is $\mathbb{Q}(i, \sqrt{5})$. It's degree is 4 because the basis $1, \sqrt{5}$ of $\mathbb{Q}(\sqrt{5})$ is independent over $\mathbb{Q}(i)$.

(4): Note that the roots are $\zeta_n^k \sqrt[n]{1+t} = \zeta_n^k \sum_{m \ge 0} {\binom{1/n}{m}} t^m \in \mathbb{C}((t))$ so the splitting field is $\mathbb{C}((t))$. \Box

- 4. Let K be a field and K(x) be the field of rational functions with coefficients in K. Let $P(x), Q(x) \in K[x]$ be two coprime polynomials and $t = P/Q \in K(x)$.
 - (a) Show that $P(X) tQ(X) \in K(t)[X]$ is irreducible and has X = x as a root. [Hint: Use Gauss' lemma and the fact that K[X][t] = K[t][X].]
 - (b) Conclude that $[K(x) : K(t)] = \max(\deg(P), \deg(Q)).$

Proof. (1): Gauss' lemma says that P(X) - tQ(X) is irreducible over K(t) iff it is irreducible over K[t]. If it's reducible over K[t][X] then it's also reducible over K[X][t] = K[t][X]. But it is linear in X and so the only way to be reducible is if P(X) - tQ(X) is divisible by a polynomial in X. But this contradicts that P and Q are coprime. Finally, P(x) - tQ(x) = 0 by definition of t.

(2): The minimal polynomial of x over K(t) is the irreducible polynomial P(X) - tQ(X) of degree max(deg P, deg Q). The same is therefore true of [K(x) : K(t)].

5. Suppose L/K is a finite extension of fields and $K \subset M_1, M_2 \subset L$ are two subextensions. Show that $M_1 \otimes_K M_2$ is a field if and only if $[M_1M_2:K] = [M_1:K][M_2:K]$. [Hint: Look at the multiplication map $M_1 \otimes_K M_2 \to M_1M_2$.]

Proof. Look at $m: M_1 \otimes_K M_2 \to M_1 M_2$ given by $m(\sum x_i \otimes y_i) = \sum x_i y_i$. This is a homomorphism of K-modules. Defining $(x \otimes y) \cdot (x' \otimes y') = (xx') \otimes (yy')$ we get a K-algebra structure on $M_1 \otimes_K M_2$ and one can check that m is a K-algebra homomorphism which sends 1 to 1.

If $M_1 \otimes_K M_2$ is a field then *m* is a field homomorphism which is not trivial as it send 1 to 1. Thus *m* is injective and so $\dim_K M_1 \otimes_K M_2 \leq \dim_K M_1 M_2$. But LHS is $[M_1 : K][M_2 : K]$ and the RHS is always $\leq [M_1 : K][M_2 : K]$ from class. Thus equality occurs.

Suppose now that equality occurs. Elements of M_1M_2 are rational expressions in elements of M_1 and M_2 . Since M_1M_2/K is finite these rational expressions are algebraic elements and therefore they are polynomial expressions in elements of M_1 and M_2 . Collecting terms we deduce that every element of M_1M_2 is of the form $\sum x_iy_i = m(\sum x_i \otimes y_i)$ for $x_i \in M_1$ and $y_i \in M_2$. Thus m is surjective. Since the LHS and RHS have equal dimension over K and m is a K-vector space surjective homomorphism we deduce it is an isomorphism and therefore $M_1 \otimes_K M_2 \cong M_1M_2$ is a field.