Graduate Algebra Homework 7

Due 2015-04-01

- 1. Let α and β be elements of a finite extension L/K.
 - (a) If $[K(\alpha) : K]$ is odd show that $K(\alpha) = K(\alpha^2)$.
 - (b) If the degree of the minimal polynomials $P_{\alpha}(X)$ (of α over K) and $P_{\beta}(X)$ (of β over K) are coprime show that $P_{\alpha}(X)$ is irreducible over $K(\beta)$.
 - (c) If K has characteristic p which does not divide [L:K] show that α is separable over K.
- 2. Let L/K be a finite extension and K_1, K_2 be two subextensions of K such that $K_1 \cap K_2 = K$ and $[K_2:K] = 2$. Show that $[K_1K_2:K] = [K_1:K][K_2:K]$.
- 3. Suppose K is not perfect. Show that there exist inseparable irreducible polynomials in K[X].
- 4. Let $\alpha = \sqrt[4]{5}$.
 - (a) Is $\mathbb{Q}(i\alpha^2)$ normal over \mathbb{Q} ?
 - (b) Is $\mathbb{Q}(\alpha + i\alpha)$ normal over $\mathbb{Q}(i\alpha^2)$?
 - (c) Is $\mathbb{Q}(\alpha + i\alpha)$ normal over \mathbb{Q} ?
- 5. Let p be a prime and $\alpha \in \mathbb{F}_p^{\times}$.
 - (a) Let $Q(X) = X^p X a$. Show that Q(X+1) = Q(X).
 - (b) Show that the splitting field K of Q over \mathbb{F}_p is a normal separable extension of degree p. [Hint: Use (a).]
 - (c) Determine the set $\operatorname{Aut}(K/\mathbb{F}_p)$. [Hint: Use (a).]

K is an Artin-Schreier extension.

- 6. Suppose $\sigma \in \operatorname{Aut}(\mathbb{R}/\mathbb{Q})$.
 - (a) Show that if x > 0 then $\sigma(x) > 0$ and conclude that σ is an increasing function.
 - (b) Show that if $|x y| < \frac{1}{n}$ then $|\sigma(x) \sigma(y)| < \frac{1}{n}$ and conclude that σ is continuous.
 - (c) Show that $\operatorname{Aut}(\mathbb{R}/\mathbb{Q}) = {\operatorname{id}}.$
- 7. Let K be any field and x a variable. Recall that PGL(2, K) is the quotient $GL(2, K)/K^{\times}I_2$ of invertible 2×2 matrices by the normal subgroup of scalar matrices. Show that as sets

$$\operatorname{Aut}(K(x)/K) \cong \operatorname{PGL}(2,K)$$

via
$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{PGL}(2, K)$$
 mapping to the automorphism $\sigma_{\gamma}(f(x)) = f\left(\frac{ax+b}{cx+d}\right)$. [Hint: If $\sigma \in \text{Aut}(K(x)/K)$ then $K(x) = K(\sigma(x))$. What does $\sigma(x)$ look like?]