
Graduate Algebra

Homework 7

Due 2015-04-01

1. Let α and β be elements of a finite extension L/K.

(a) If [K(α) : K] is odd show that K(α) = K(α2).

(b) If the degree of the minimal polynomials Pα(X) (of α over K) and Pβ(X) (of β over K) are
coprime show that Pα(X) is irreducible over K(β).

(c) If K has characteristic p which does not divide [L : K] show that α is separable over K.

Proof. (1): K(α)/K(α2)/K are extensions and so [K(α) : K(α2)] divides the odd number [K(α) : K].
The former is either 1 or 2 and since the latter is odd we deduce that K(α) = K(α2).

(2): Note that degPα = [K(α) : K]. Let Q be the minimal polynomial of α over K(β). Clearly Q | Pα
and we need equality. Since [K(β)(α) : K(β)] = degQ it suffices to show that [K(α, β) : K(β)] =
degPα = [K(α) : K]. But [K(α) : K] = degPα and [K(β) : K] = degPβ are coprime and so from
class [K(α, β) : K] = [K(α) : K][K(β) : K] and so we deduce [K(α, β) : K(β)] = [K(α) : K].

(3): Note that degPα = [K(α) : K] | [L : K] and so degPα is coprime to p. If Pα we inseparable
we know there exists some polynomial Q such that Pα(X) = Q(Xp) and so p | p degQ = degPα,
contradiction.

2. Let L/K be a finite extension and K1,K2 be two subextensions of K such that [K2 : K] = 2 and
K1 ∩K2 = K. Show that [K1K2 : K] = [K1 : K][K2 : K].

Proof. Let u, v be a basis of K2 over K. If [K1K2 : K] < [K1 : K][K2 : K] then from class u and
v must be linearly dependent over K1. Let a, b ∈ K1 not both 0 such that au + bv = 0. Say a 6= 0.
Then u/v = −b/a. But the LHS is in K2 and the RHS is in K1 and the only possibility is that
u/v = −b/a ∈ K1 ∩K2 = K. But then u and v are linearly dependent over K contradicting the fact
that they form a basis.

3. Suppose K is not perfect. Show that there exist inseparable irreducible polynomials in K[X].

Proof. Since K is not perfect there exists a ∈ K such that a is not of the form bp. Therefore Xp− a ∈
K[X] does not split completely over K. Let P (X) be any irreducible factor of Xp − a of degree ≥ 2.
Let α be a root of P (X). Then α /∈ K because αp = a. Moreover, Xp − a = Xp − αp = (X − α)p and
P (X) | (X − α)p. We deduce that P (X) is inseparable as all its roots are equal to α.

4. Let α = 4
√

5.

(a) Is Q(iα2) normal over Q?

(b) Is Q(α+ iα) normal over Q(iα2)?

(c) Is Q(α+ iα) normal over Q?
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Proof. Note that every quadratic extension is normal. Indeed, if L = K(α) where α satisfies a polyno-
mial X2 − aX + b = 0 then the other root β of this polynomial is a− α ∈ L and so L is the splitting
field of X2 − aX + b over K and so it is normal.

(1): iα2 =
√
−5 so Q(iα2) is quadratic and therefore normal over Q.

(2): Write x = α + iα. Then x2 = α2(1 + i)2 = 2iα2 and so Q(α + iα) is quadratic and therefore
normal over Q(iα2).

(3): Again x = α + iα. If Q(x) were normal over Q then all the roots of the minimal polynomial of
x would be in Q(x). But x2 = 2iα2 = 2

√
−5 so the minimal polynomial is x4 + 20 = 0 ([Q(x) : Q] =

[Q(x) : Q(iα2)][Q(iα2) : Q] = 2 · 2 = 4). The four roots are ±α ± iα. If all four were in Q(x) then
α = (x + α − iα)/2 ∈ Q(x) and therefore i ∈ Q(x). We’d deduce that Q(x) = Q(i, α). But α ∈ R
and so Q(α) ⊂ R from where we’d get Q(i) ∩ Q(α) = Q. From the previous problem we’d get that
[Q(i, α) : Q] = 2 · 4 = 8 contradicting that [Q(x) : Q] = 4. We conclude that Q(x) is not normal over
Q.

5. Let p be a prime and α ∈ F×p .

(a) Let Q(X) = Xp −X − a. Show that Q(X + 1) = Q(X).

(b) Show that the splitting field K of Q over Fp is a normal separable extension of degree p. [Hint:
Use (a).]

(c) Determine the set Aut(K/Fp). [Hint: Use (a).]

K is an Artin-Schreier extension.

Proof. (1): Q(X + 1) = (X + 1)p − (X + 1)− a = Xp + 1p −X − 1− a = Q(X).

(2): Suppose α is a root of Q. Then Q(α) = Q(α+ 1) = · · · = Q(α+ p− 1) = 0 and so the roots of Q
are all distinct equal to α, α+ 1, . . . , α+p−1. Thus K = Fp(α, α+ 1, . . . , α+p−1) = Fp(α) is normal
and separable over Fp. It remains to show that Q is irreducible. Part (3) shows that Aut(K/Fp)
has p elements and from class p = |Aut(K/Fp)| ≤ [K : Fp] = deg minα(X) ≤ p. We conclude that
minα(X) = Q(X) which is then irreducible.

(3): We know from class that |Aut(K/Fp)| ≤ [K : Fp] = deg minα ≤ degQ(X) = p. It suffices to
exhibit p automorphisms in Aut(K/Fp). Note that K = Fp(α) = Fp[α]. For 0 ≤ k ≤ p − 1 define
σk : Fp[α]→ Fp[α] defined by σk(R(α)) = R(α+k) for R ∈ Fp[X]. This is clearly an isomorphism with
inverse σ−k. Note that if R is constant then σk(R) = R so σk ∈ Aut(K/Fp). All the automorphisms
σ0, . . . , σp−1 are distinct (they take α to distinct elements) so Aut(K/Fp) = {σ0, . . . , σp−1}.

6. Suppose σ ∈ Aut(R/Q).

(a) Show that if x > 0 then σ(x) > 0 and conclude that σ is an increasing function.

(b) Show that if |x− y| < 1
n then |σ(x)− σ(y)| < 1

n and conclude that σ is continuous.

(c) Show that Aut(R/Q) = {id}.

Proof. (1): If x ≥ 0 then σ(x) = σ((
√
x)2) = σ(

√
x)2 ≥ 0. Equality occurs iff σ(

√
x) = 0 iff

√
x = 0 iff

x = 0. If x < y then y − x > 0 so σ(y)− σ(x) = σ(y − x) > 0.

(2): Suppose −1/n < x − y < 1/n. Then −1/n = σ(−1/n) < σ(x) − σ(y) < σ(1/n) = 1/n. This
|σ(x)− σ(y)| < 1/n. For δ > 1/n take ε = 1/n in the definition of continuity so σ is continuous.

(3): Any x ∈ R is a limit x = lim qn with qn ∈ Q. Since σ ∈ Aut(R/Q) is continuous σ(x) = limσ(qn) =
lim qn = x so σ = id.
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7. Let K be any field and x a variable. Recall that PGL(2,K) is the quotient GL(2,K)/K×I2 of invertible
2× 2 matrices by the normal subgroup of scalar matrices. Show that

Aut(K(x)/K) ∼= PGL(2,K)

via γ =

(
a b
c d

)
∈ PGL(2,K) mapping to the automorphism σγ(f(x)) = f

(
ax+ b

cx+ d

)
. [Hint: If

σ ∈ Aut(K(x)/K) then K(x) = K(σ(x)). What does σ(x) look like?]

Proof. If σ ∈ Aut(K(x) : K) then K(x) ∼= K(σ(x)). But σ(x) ∈ K(x) so we conclude that K(x) =
K(σ(x)). But σ(x) = P (x)/Q(x) is a rational function and from homework 6 we know that [K(x) :

K(σ(x))] = max(degP,degQ). Thus P and Q are linear and so σ(x) =
ax+ b

cx+ d
for some matrix

γ =

(
a b
c d

)
. Similarly σ−1(x) =

ux+ v

wx+ t
for some matrix η =

(
u v
w t

)
. Since σ(σ−1(x)) = x

we conclude that γη = I2 and so γ ∈ GL(2,K). If R(x) is any rational function then σ(R(x)) =

R(σ(x)) = R(
ax+ b

cx+ d
) as desired.

If λ ∈ K× the it’s clear that σγ = σλγ . Suppose σγ = σγ′ for two matrices γ, γ′ ∈ GL(2,K). Then
ax+ b

cx+ d
=
a′x+ b′

c′x+ d′
as rational functions. There are two ways of proceeding. One way is to multiply

everything out and do a case-by-case analysis. This is somewhat unpleasant to write out, but quite
straightforward. We get ac′ = a′c, ad′ + bc′ = a′d+ b′c and bd′ = b′d and so on. Another is to notice

that the equality of the two rational functions is equivalent to the matrix x

(
a a′

c c′

)
+

(
b b′

d d′

)
has 0

determinant. If

(
a a′

c c′

)
is invertible, then we’d deduce that

(
b b′

d d′

)(
a a′

c c′

)−1
has 0 characteristic

polynomial which is impossible. Therefore det

(
a a′

c c′

)
= 0. The matrices γ and γ′ are invertible and

so the matrix

(
a a′

c c′

)
has nonzero columns. Thus the determinant 0 condition implies there exists

λ ∈ K× such that a = λa′, c = λc′.

We have σγ = σγ′ = σλγ′ and so
ax+ b

cx+ d
=

ax+ λb′

cx+ λd′
. We get

ax+ b

ax+ λb′
=

cx+ d

cx+ λd′
which implies

b− λb′

ax+ λb′
=

d− λd′

cx+ λd′
. If the numerators are nonzero we’d get that

ax+ λb′

cx+ λd′
=

b− λb′

d− λd′
∈ K. But

[K(x) : K(LHS)] = 1 as at least one of a, c is nonzero (homework 6). This is a contradiction and so
b = λb′ and d = λd′. Thus γ = λγ′.

Thus GL(2,K) → Aut(K(x)/K) sending γ to σγ factors through PGL(2,K) → Aut(K(X)/K) and
this maps is injective and surjective.
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