1. Let \(\alpha \) and \(\beta \) be elements of a finite extension \(L/K \).
 (a) If \([K(\alpha) : K] \) is odd show that \(K(\alpha) = K(\alpha^2) \).
 (b) If the degree of the minimal polynomials \(P_\alpha(X) \) (of \(\alpha \) over \(K \)) and \(P_\beta(X) \) (of \(\beta \) over \(K \)) are coprime show that \(P_\alpha(X) \) is irreducible over \(K(\beta) \).
 (c) If \(K \) has characteristic \(p \) which does not divide \([L : K]\) show that \(\alpha \) is separable over \(K \).

 Proof. (1): \(K(\alpha)/K(\alpha^2)/K \) are extensions and so \([K(\alpha) : K(\alpha^2)] \) divides the odd number \([K(\alpha) : K] \). The former is either 1 or 2 and since the latter is odd we deduce that \(K(\alpha) = K(\alpha^2) \).

 (2): Note that \(\deg P_\alpha = [K(\alpha) : K] \). Let \(Q \) be the minimal polynomial of \(\alpha \) over \(K(\beta) \). Clearly \(Q | P_\alpha \) and we need equality. Since \([K(\beta)(\alpha) : K(\beta)] = \deg Q \) it suffices to show that \([K(\alpha, \beta) : K(\beta)] = \deg P_\alpha = [K(\alpha) : K] \). But \([K(\alpha) : K] = \deg P_\alpha \) and \([K(\beta) : K] = \deg P_\beta \) are coprime and so from class \([K(\alpha, \beta) : K] = [K(\alpha) : K][K(\beta) : K] \) and so we deduce \([K(\alpha, \beta) : K(\beta)] = [K(\alpha) : K] \).

 (3): Note that \(\deg P_\alpha = [K(\alpha) : K] | [L : K] \) and so \(\deg P_\alpha \) is coprime to \(p \). If \(P_\alpha \) inseparable we know there exists some polynomial \(Q \) such that \(P_\alpha(X) = Q(X^p) \) and so \(p | \deg Q = \deg P_\alpha \), contradiction.

2. Let \(L/K \) be a finite extension and \(K_1, K_2 \) be two subextensions of \(K \) such that \([K_2 : K] = 2 \) and \(K_1 \cap K_2 = K \). Show that \([K_1K_2 : K] = [K_1 : K][K_2 : K] \).

 Proof. Let \(u, v \) be a basis of \(K_2 \) over \(K \). If \([K_1K_2 : K] < [K_1 : K][K_2 : K] \) then from class \(u \) and \(v \) must be linearly dependent over \(K_1 \). Let \(a, b \in K_1 \) not both 0 such that \(au + bv = 0 \). Say \(a \neq 0 \). Then \(u/v = -b/a \). But the LHS is in \(K_2 \) and the RHS is in \(K_1 \) and the only possibility is that \(u/v = -b/a \in K_1 \cap K_2 = K \). But then \(u \) and \(v \) are linearly dependent over \(K \) contradicting the fact that they form a basis.

3. Suppose \(K \) is not perfect. Show that there exist inseparable irreducible polynomials in \(K[X] \).

 Proof. Since \(K \) is not perfect there exists \(a \in K \) such that \(a \) is not of the form \(b^p \). Therefore \(X^p - a \in K[X] \) does not split completely over \(K \). Let \(P(X) \) be any irreducible factor of \(X^p - a \) of degree \(\geq 2 \). Let \(\alpha \) be a root of \(P(X) \). Then \(\alpha \notin K \) because \(\alpha^p = a \). Moreover, \(X^p - a = X^p - \alpha^p = (X - \alpha)^p \) and \(P(X) | (X - \alpha)^p \). We deduce that \(P(X) \) is inseparable as all its roots are equal to \(\alpha \).

4. Let \(\alpha = \sqrt[3]{5} \).
 (a) Is \(\mathbb{Q}(i\alpha^2) \) normal over \(\mathbb{Q} \)?
 (b) Is \(\mathbb{Q}(\alpha + i\alpha) \) normal over \(\mathbb{Q}(i\alpha^2) \)?
 (c) Is \(\mathbb{Q}(\alpha + i\alpha) \) normal over \(\mathbb{Q} \)?
Proof. Note that every quadratic extension is normal. Indeed, if \(L = K(\alpha) \) where \(\alpha \) satisfies a polynomial \(X^2 - aX + b = 0 \) then the other root \(\beta \) of this polynomial is \(a - \alpha \in L \) and so \(L \) is the splitting field of \(X^2 - aX + b \) over \(K \) and so it is normal.

(1): \(\sigma x^2 = \sqrt{a} \) so \(Q(\sigma x^2) \) is quadratic and therefore normal over \(Q \).

(2): Write \(x = \alpha + i\alpha \). Then \(x^2 = \alpha^2(1 + i)^2 = 2i\alpha^2 \) and so \(Q(\alpha + i\alpha) \) is quadratic and therefore normal over \(Q(\alpha i\alpha^2) \).

(3): \(\sigma x = \alpha + i\alpha \). If \(Q(x) \) were normal over \(Q \) then all the roots of the minimal polynomial of \(x \) would be in \(Q(x) \). But \(x^2 = 2i\alpha^2 = 2\sqrt{a} \) so the minimal polynomial is \(x^2 + 20 = 0 \) \(([Q(x) : Q] = \lceil Q(x) : Q(\alpha^2) \rceil) = 2 = 2 \cdot 2 \). The four roots are \(x = \alpha \pm \alpha \mp i\alpha \). If all four were in \(Q(x) \) then \(\alpha = (x + \alpha - i\alpha)/2 \in Q(x) \) and therefore \(i \in Q(x) \). We'd deduce that \(Q(x) = Q(i, \alpha) \). But \(\alpha \in \mathbb{R} \) and so \(Q(\alpha) \subset \mathbb{R} \) from where we'd get \(Q(i) \cap Q(\alpha) = Q \). From the previous problem we'd get that \([Q(i, \alpha) : Q] = 2 \cdot 4 = 8 \) contradicting that \([Q(x) : Q] = 4 \). We conclude that \(Q(x) \) is not normal over \(Q \).

5. Let \(p \) be a prime and \(\alpha \in \mathbb{F}_p^\times \).

(a) Let \(Q(X) = X^p - X - a \). Show that \(Q(X + 1) = Q(X) \).

(b) Show that the splitting field \(K \) of \(Q(X + 1) \) is a normal separable extension of degree \(p \). [Hint: Use (a).]

(c) Determine the set \(\text{Aut}(K/\mathbb{F}_p) \). [Hint: Use (a).]

\(K \) is an Artin-Schreier extension.

Proof. (1): \(Q(X + 1) = (X + 1)^p - (X + 1) - a = X^p + 1^p - X - 1 - a = Q(X) \).

(2): Suppose \(\alpha \) is a root of \(Q \). Then \(Q(\alpha) = Q(\alpha + 1) = \cdots = Q(\alpha + p - 1) = 0 \) and so the roots of \(Q \) are distinct equal to \(\alpha, \alpha + 1, \ldots, \alpha + p - 1 \). Thus \(K = \mathbb{F}_p(\alpha, \alpha + 1, \ldots, \alpha + p - 1) = \mathbb{F}_p(\alpha) \) is normal and separable over \(\mathbb{F}_p \). It remains to show that \(Q \) is irreducible. Part (3) shows that \(\text{Aut}(K/\mathbb{F}_p) \) has \(p \) elements and from class \(p = [\text{Aut}(K/\mathbb{F}_p)] \leq [K : \mathbb{F}_p] = \text{deg \, min}_a(X) \leq p \). We conclude that \(\text{min}_a(X) = Q(X) \) which is then irreducible.

(3): We know from class that \([\text{Aut}(K/\mathbb{F}_p)] \leq [K : \mathbb{F}_p] = \text{deg \, min}_a \leq \text{deg \, Q(X)} = p \). It suffices to exhibit \(p \) automorphisms in \(\text{Aut}(K/\mathbb{F}_p) \). Note that \(K = \mathbb{F}_p(\alpha) = \mathbb{F}_p[\alpha] \). For \(0 \leq k \leq p - 1 \) define \(\sigma_k : \mathbb{F}_p[\alpha] \to \mathbb{F}_p[\alpha] \) defined by \(\sigma_k(R(\alpha)) = R(\alpha + k) \) for \(R \in \mathbb{F}_p[X] \). This is clearly an isomorphism with inverse \(\sigma_{-k} \). Note that if \(R \) is constant then \(\sigma_k(R) = R \) so \(\sigma_k \in \text{Aut}(K/\mathbb{F}_p) \). All the automorphisms \(\sigma_0, \ldots, \sigma_{p-1} \) are distinct (they take \(a \) to distinct elements) so \(\text{Aut}(K/\mathbb{F}_p) = \{\sigma_0, \ldots, \sigma_{p-1}\} \).

6. Suppose \(\sigma \in \text{Aut}(\mathbb{R}/\mathbb{Q}) \).

(a) Show that if \(x > 0 \) then \(\sigma(x) > 0 \) and conclude that \(\sigma \) is an increasing function.

(b) Show that if \(|x - y| < \frac{1}{n} \) then \(|\sigma(x) - \sigma(y)| < \frac{1}{n} \) and conclude that \(\sigma \) is continuous.

(c) Show that \(\text{Aut}(\mathbb{R}/\mathbb{Q}) = \{\text{id}\} \).

Proof. (1): If \(x \geq 0 \) then \(\sigma(x) = \sigma(\sqrt{x})^2 = \sigma(\sqrt{x})^2 \geq 0 \). Equality occurs iff \(\sigma(\sqrt{x}) = 0 \) iff \(\sqrt{x} = 0 \) iff \(x = 0 \). If \(x < y \) then \(y - x > 0 \) so \(\sigma(y) - \sigma(x) = \sigma(y - x) > 0 \).

(2): Suppose \(-1/n < x - y < 1/n \). Then \(-1/n = \sigma(-1/n) < \sigma(x) - \sigma(y) < \sigma(1/n) = 1/n \). This \(|\sigma(x) - \sigma(y)| < 1/n \). For \(\delta > 1/n \) take \(\varepsilon = 1/n \) in the definition of continuity so \(\sigma \) is continuous.

(3): Any \(x \in \mathbb{R} \) is a limit \(x = \lim q_n \) with \(q_n \in \mathbb{Q} \). Since \(\sigma \in \text{Aut}(\mathbb{R}/\mathbb{Q}) \) is continuous \(\sigma(x) = \lim \sigma(q_n) = \lim q_n = x \) so \(\sigma = \text{id} \).
7. Let \(K \) be any field and \(x \) a variable. Recall that \(\text{PGL}(2, K) \) is the quotient \(\text{GL}(2, K)/K \times I_2 \) of invertible \(2 \times 2 \) matrices by the normal subgroup of scalar matrices. Show that
\[
\text{Aut}(K(x)/K) \cong \text{PGL}(2, K)
\]
via \(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{PGL}(2, K) \) mapping to the automorphism \(\sigma_\gamma(f(x)) = f \left(\frac{ax + b}{cx + d} \right) \). [Hint: If \(\sigma \in \text{Aut}(K(x)/K) \) then \(K(x) = K(\sigma(x)) \). What does \(\sigma(x) \) look like?]

Proof. If \(\sigma \in \text{Aut}(K(x): K) \) then \(K(x) \cong \text{K}(\sigma(x)) \). But \(\sigma(x) \in K(x) \) so we conclude that \(K(x) = K(\sigma(x)) \). But \(\sigma(x) = P(x)/Q(x) \) is a rational function and from homework 6 we know that \([K(x): K(\sigma(x))] = \max(\text{deg} P, \text{deg} Q) \). Thus \(P \) and \(Q \) are linear and so \(\sigma(x) = \frac{ax + b}{cx + d} \) for some matrix \(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \). Similarly \(\sigma^{-1}(x) = \frac{ux + v}{wx + t} \) for some matrix \(\eta = \begin{pmatrix} u & v \\ w & t \end{pmatrix} \). Since \(\sigma(\sigma^{-1}(x)) = x \) we conclude that \(\gamma \eta = I_2 \) and so \(\gamma \in \text{GL}(2, K) \). If \(R(x) \) is any rational function then \(\sigma(R(x)) = R(\sigma(x)) = R(\frac{ax + b}{cx + d}) \) as desired.

If \(\lambda \in K^\times \) the it’s clear that \(\sigma_\gamma = \sigma_{\lambda \gamma} \). Suppose \(\sigma_\gamma = \sigma_{\gamma'} \) for two matrices \(\gamma, \gamma' \in \text{GL}(2, K) \). Then \(\frac{ax + b}{cx + d} = \frac{a'x + b'}{c'x + d'} \) as rational functions. There are two ways of proceeding. One way is to multiply everything out and do a case-by-case analysis. This is somewhat unpleasant to write out, but quite straightforward. We get \(a' = a, ad = c'd + b'c \) and \(b' = b + d' \) and so on. Another is to notice that the equality of the two rational functions is equivalent to the matrix \(x \begin{pmatrix} a & a' \\ c & c' \end{pmatrix} + \begin{pmatrix} b & b' \\ d & d' \end{pmatrix} \) has 0 determinant. If \(\begin{pmatrix} a & a' \\ c & c' \end{pmatrix} \) is invertible, then we’d deduce that \(\begin{pmatrix} b & b' \\ d & d' \end{pmatrix} \begin{pmatrix} a & a' \\ c & c' \end{pmatrix}^{-1} \) has 0 characteristic polynomial which is impossible. Therefore \(\det \begin{pmatrix} a & a' \\ c & c' \end{pmatrix} = 0 \). The matrices \(\gamma \) and \(\gamma' \) are invertible and so the matrix \(\begin{pmatrix} a & a' \\ c & c' \end{pmatrix} \) has nonzero columns. Thus the determinant 0 condition implies there exists \(\lambda \in K^\times \) such that \(a = \lambda a' \), \(c = \lambda c' \).

We have \(\sigma_\gamma = \sigma_{\gamma'} = \sigma_{\lambda \gamma} \) and so \(\frac{ax + b}{cx + d} = \frac{ax + \lambda b'}{cx + \lambda d'} \). We get \(\frac{ax + b}{cx + d} = \frac{cx + d}{cx + \lambda d'} \). This implies \(\frac{ax + b}{cx + d} = \frac{d - \lambda d'}{d - \lambda d'} \). If the numerators are nonzero we’d get that \(\frac{ax + b}{cx + \lambda d'} = \frac{b - \lambda b'}{d - \lambda d'} \in K \). But \([K(x): K(LHS)] = 1 \) as at least one of \(a, c \) is nonzero (homework 6). This is a contradiction and so \(b = \lambda b' \) and \(d = \lambda d' \). Thus \(\gamma = \lambda \gamma' \).

Thus \(\text{GL}(2, K) \to \text{Aut}(K(x)/K) \) sending \(\gamma \) to \(\sigma_\gamma \) factors through \(\text{PGL}(2, K) \to \text{Aut}(K(X)/K) \) and this maps is injective and surjective. \(\square \)