Graduate Algebra Homework 7

Due 2015-04-01

- 1. Let α and β be elements of a finite extension L/K.
 - (a) If $[K(\alpha) : K]$ is odd show that $K(\alpha) = K(\alpha^2)$.
 - (b) If the degree of the minimal polynomials $P_{\alpha}(X)$ (of α over K) and $P_{\beta}(X)$ (of β over K) are coprime show that $P_{\alpha}(X)$ is irreducible over $K(\beta)$.
 - (c) If K has characteristic p which does not divide [L:K] show that α is separable over K.

Proof. (1): $K(\alpha)/K(\alpha^2)/K$ are extensions and so $[K(\alpha) : K(\alpha^2)]$ divides the odd number $[K(\alpha) : K]$. The former is either 1 or 2 and since the latter is odd we deduce that $K(\alpha) = K(\alpha^2)$.

(2): Note that deg $P_{\alpha} = [K(\alpha) : K]$. Let Q be the minimal polynomial of α over $K(\beta)$. Clearly $Q \mid P_{\alpha}$ and we need equality. Since $[K(\beta)(\alpha) : K(\beta)] = \deg Q$ it suffices to show that $[K(\alpha, \beta) : K(\beta)] = \deg P_{\alpha} = [K(\alpha) : K]$. But $[K(\alpha) : K] = \deg P_{\alpha}$ and $[K(\beta) : K] = \deg P_{\beta}$ are coprime and so from class $[K(\alpha, \beta) : K] = [K(\alpha) : K][K(\beta) : K]$ and so we deduce $[K(\alpha, \beta) : K(\beta)] = [K(\alpha) : K]$.

(3): Note that deg $P_{\alpha} = [K(\alpha) : K] \mid [L : K]$ and so deg P_{α} is coprime to p. If P_{α} we inseparable we know there exists some polynomial Q such that $P_{\alpha}(X) = Q(X^p)$ and so $p \mid p \deg Q = \deg P_{\alpha}$, contradiction.

2. Let L/K be a finite extension and K_1, K_2 be two subextensions of K such that $[K_2 : K] = 2$ and $K_1 \cap K_2 = K$. Show that $[K_1K_2 : K] = [K_1 : K][K_2 : K]$.

Proof. Let u, v be a basis of K_2 over K. If $[K_1K_2 : K] < [K_1 : K][K_2 : K]$ then from class u and v must be linearly dependent over K_1 . Let $a, b \in K_1$ not both 0 such that au + bv = 0. Say $a \neq 0$. Then u/v = -b/a. But the LHS is in K_2 and the RHS is in K_1 and the only possibility is that $u/v = -b/a \in K_1 \cap K_2 = K$. But then u and v are linearly dependent over K contradicting the fact that they form a basis.

3. Suppose K is not perfect. Show that there exist inseparable irreducible polynomials in K[X].

Proof. Since K is not perfect there exists $a \in K$ such that a is not of the form b^p . Therefore $X^p - a \in K[X]$ does not split completely over K. Let P(X) be any irreducible factor of $X^p - a$ of degree ≥ 2 . Let α be a root of P(X). Then $\alpha \notin K$ because $\alpha^p = a$. Moreover, $X^p - a = X^p - \alpha^p = (X - \alpha)^p$ and $P(X) \mid (X - \alpha)^p$. We deduce that P(X) is inseparable as all its roots are equal to α .

4. Let
$$\alpha = \sqrt[4]{5}$$
.

- (a) Is $\mathbb{Q}(i\alpha^2)$ normal over \mathbb{Q} ?
- (b) Is $\mathbb{Q}(\alpha + i\alpha)$ normal over $\mathbb{Q}(i\alpha^2)$?
- (c) Is $\mathbb{Q}(\alpha + i\alpha)$ normal over \mathbb{Q} ?

Proof. Note that every quadratic extension is normal. Indeed, if $L = K(\alpha)$ where α satisfies a polynomial $X^2 - aX + b = 0$ then the other root β of this polynomial is $a - \alpha \in L$ and so L is the splitting field of $X^2 - aX + b$ over K and so it is normal.

(1): $i\alpha^2 = \sqrt{-5}$ so $\mathbb{Q}(i\alpha^2)$ is quadratic and therefore normal over \mathbb{Q} .

(2): Write $x = \alpha + i\alpha$. Then $x^2 = \alpha^2(1+i)^2 = 2i\alpha^2$ and so $\mathbb{Q}(\alpha + i\alpha)$ is quadratic and therefore normal over $\mathbb{Q}(i\alpha^2)$.

(3): Again $x = \alpha + i\alpha$. If $\mathbb{Q}(x)$ were normal over \mathbb{Q} then all the roots of the minimal polynomial of x would be in $\mathbb{Q}(x)$. But $x^2 = 2i\alpha^2 = 2\sqrt{-5}$ so the minimal polynomial is $x^4 + 20 = 0$ ($[\mathbb{Q}(x) : \mathbb{Q}] = [\mathbb{Q}(x) : \mathbb{Q}(i\alpha^2)][\mathbb{Q}(i\alpha^2) : \mathbb{Q}] = 2 \cdot 2 = 4$). The four roots are $\pm \alpha \pm i\alpha$. If all four were in $\mathbb{Q}(x)$ then $\alpha = (x + \alpha - i\alpha)/2 \in \mathbb{Q}(x)$ and therefore $i \in \mathbb{Q}(x)$. We'd deduce that $\mathbb{Q}(x) = \mathbb{Q}(i,\alpha)$. But $\alpha \in \mathbb{R}$ and so $\mathbb{Q}(\alpha) \subset \mathbb{R}$ from where we'd get $\mathbb{Q}(i) \cap \mathbb{Q}(\alpha) = \mathbb{Q}$. From the previous problem we'd get that $[\mathbb{Q}(i,\alpha) : \mathbb{Q}] = 2 \cdot 4 = 8$ contradicting that $[\mathbb{Q}(x) : \mathbb{Q}] = 4$. We conclude that $\mathbb{Q}(x)$ is not normal over \mathbb{Q} .

- 5. Let p be a prime and $\alpha \in \mathbb{F}_p^{\times}$.
 - (a) Let $Q(X) = X^p X a$. Show that Q(X + 1) = Q(X).
 - (b) Show that the splitting field K of Q over \mathbb{F}_p is a normal separable extension of degree p. [Hint: Use (a).]
 - (c) Determine the set $\operatorname{Aut}(K/\mathbb{F}_p)$. [Hint: Use (a).]

K is an Artin-Schreier extension.

Proof. (1): $Q(X+1) = (X+1)^p - (X+1) - a = X^p + 1^p - X - 1 - a = Q(X).$

(2): Suppose α is a root of Q. Then $Q(\alpha) = Q(\alpha + 1) = \cdots = Q(\alpha + p - 1) = 0$ and so the roots of Q are all distinct equal to $\alpha, \alpha + 1, \ldots, \alpha + p - 1$. Thus $K = \mathbb{F}_p(\alpha, \alpha + 1, \ldots, \alpha + p - 1) = \mathbb{F}_p(\alpha)$ is normal and separable over \mathbb{F}_p . It remains to show that Q is irreducible. Part (3) shows that $\operatorname{Aut}(K/\mathbb{F}_p)$ has p elements and from class $p = |\operatorname{Aut}(K/\mathbb{F}_p)| \leq [K : \mathbb{F}_p] = \operatorname{deg}\min_{\alpha}(X) \leq p$. We conclude that $\min_{\alpha}(X) = Q(X)$ which is then irreducible.

(3): We know from class that $|\operatorname{Aut}(K/\mathbb{F}_p)| \leq [K : \mathbb{F}_p] = \operatorname{deg\,min}_{\alpha} \leq \operatorname{deg} Q(X) = p$. It suffices to exhibit p automorphisms in $\operatorname{Aut}(K/\mathbb{F}_p)$. Note that $K = \mathbb{F}_p(\alpha) = \mathbb{F}_p[\alpha]$. For $0 \leq k \leq p-1$ define $\sigma_k : \mathbb{F}_p[\alpha] \to \mathbb{F}_p[\alpha]$ defined by $\sigma_k(R(\alpha)) = R(\alpha+k)$ for $R \in \mathbb{F}_p[X]$. This is clearly an isomorphism with inverse σ_{-k} . Note that if R is constant then $\sigma_k(R) = R$ so $\sigma_k \in \operatorname{Aut}(K/\mathbb{F}_p)$. All the automorphisms $\sigma_0, \ldots, \sigma_{p-1}$ are distinct (they take α to distinct elements) so $\operatorname{Aut}(K/\mathbb{F}_p) = \{\sigma_0, \ldots, \sigma_{p-1}\}$. \Box

- 6. Suppose $\sigma \in \operatorname{Aut}(\mathbb{R}/\mathbb{Q})$.
 - (a) Show that if x > 0 then $\sigma(x) > 0$ and conclude that σ is an increasing function.
 - (b) Show that if $|x y| < \frac{1}{n}$ then $|\sigma(x) \sigma(y)| < \frac{1}{n}$ and conclude that σ is continuous.
 - (c) Show that $\operatorname{Aut}(\mathbb{R}/\mathbb{Q}) = {\operatorname{id}}.$

Proof. (1): If $x \ge 0$ then $\sigma(x) = \sigma((\sqrt{x})^2) = \sigma(\sqrt{x})^2 \ge 0$. Equality occurs iff $\sigma(\sqrt{x}) = 0$ iff $\sqrt{x} = 0$ iff x = 0. If x < y then y - x > 0 so $\sigma(y) - \sigma(x) = \sigma(y - x) > 0$.

(2): Suppose -1/n < x - y < 1/n. Then $-1/n = \sigma(-1/n) < \sigma(x) - \sigma(y) < \sigma(1/n) = 1/n$. This $|\sigma(x) - \sigma(y)| < 1/n$. For $\delta > 1/n$ take $\varepsilon = 1/n$ in the definition of continuity so σ is continuous.

(3): Any $x \in \mathbb{R}$ is a limit $x = \lim q_n$ with $q_n \in \mathbb{Q}$. Since $\sigma \in \operatorname{Aut}(\mathbb{R}/\mathbb{Q})$ is continuous $\sigma(x) = \lim \sigma(q_n) = \lim q_n = x$ so $\sigma = \operatorname{id}$.

7. Let K be any field and x a variable. Recall that PGL(2, K) is the quotient $GL(2, K)/K^{\times}I_2$ of invertible 2×2 matrices by the normal subgroup of scalar matrices. Show that

$$\operatorname{Aut}(K(x)/K) \cong \operatorname{PGL}(2,K)$$

via $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{PGL}(2, K)$ mapping to the automorphism $\sigma_{\gamma}(f(x)) = f\left(\frac{ax+b}{cx+d}\right)$. [Hint: If $\sigma \in \text{Aut}(K(x)/K)$ then $K(x) = K(\sigma(x))$. What does $\sigma(x)$ look like?]

Proof. If $\sigma \in \operatorname{Aut}(K(x):K)$ then $K(x) \cong K(\sigma(x))$. But $\sigma(x) \in K(x)$ so we conclude that $K(x) = K(\sigma(x))$. But $\sigma(x) = P(x)/Q(x)$ is a rational function and from homework 6 we know that $[K(x): K(\sigma(x))] = \max(\deg P, \deg Q)$. Thus P and Q are linear and so $\sigma(x) = \frac{ax+b}{cx+d}$ for some matrix $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Similarly $\sigma^{-1}(x) = \frac{ux+v}{wx+t}$ for some matrix $\eta = \begin{pmatrix} u & v \\ w & t \end{pmatrix}$. Since $\sigma(\sigma^{-1}(x)) = x$ we conclude that $\gamma\eta = I_2$ and so $\gamma \in \operatorname{GL}(2, K)$. If R(x) is any rational function then $\sigma(R(x)) = R(\sigma(x)) = R(\frac{ax+b}{cx+d})$ as desired.

If $\lambda \in K^{\times}$ the it's clear that $\sigma_{\gamma} = \sigma_{\lambda\gamma}$. Suppose $\sigma_{\gamma} = \sigma_{\gamma'}$ for two matrices $\gamma, \gamma' \in \operatorname{GL}(2, K)$. Then $\frac{ax+b}{cx+d} = \frac{a'x+b'}{c'x+d'}$ as rational functions. There are two ways of proceeding. One way is to multiply everything out and do a case-by-case analysis. This is somewhat unpleasant to write out, but quite straightforward. We get ac' = a'c, ad' + bc' = a'd + b'c and bd' = b'd and so on. Another is to notice that the equality of the two rational functions is equivalent to the matrix $x \begin{pmatrix} a & a' \\ c & c' \end{pmatrix} + \begin{pmatrix} b & b' \\ d & d' \end{pmatrix}$ has 0 determinant. If $\begin{pmatrix} a & a' \\ c & c' \end{pmatrix}$ is invertible, then we'd deduce that $\begin{pmatrix} b & b' \\ d & d' \end{pmatrix} \begin{pmatrix} a & a' \\ c & c' \end{pmatrix}^{-1}$ has 0 characteristic polynomial which is impossible. Therefore det $\begin{pmatrix} a & a' \\ c & c' \end{pmatrix} = 0$. The matrices γ and γ' are invertible and so the matrix $\begin{pmatrix} a & a' \\ c & c' \end{pmatrix}$ has nonzero columns. Thus the determinant 0 condition implies there exists $\lambda \in K^{\times}$ such that $a = \lambda a', c = \lambda c'$.

We have $\sigma_{\gamma} = \sigma_{\gamma'} = \sigma_{\lambda\gamma'}$ and so $\frac{ax+b}{cx+d} = \frac{ax+\lambda b'}{cx+\lambda d'}$. We get $\frac{ax+b}{ax+\lambda b'} = \frac{cx+d}{cx+\lambda d'}$ which implies $\frac{b-\lambda b'}{ax+\lambda b'} = \frac{d-\lambda d'}{cx+\lambda d'}$. If the numerators are nonzero we'd get that $\frac{ax+\lambda b'}{cx+\lambda d'} = \frac{b-\lambda b'}{d-\lambda d'} \in K$. But [K(x): K(LHS)] = 1 as at least one of a, c is nonzero (homework 6). This is a contradiction and so $b = \lambda b'$ and $d = \lambda d'$. Thus $\gamma = \lambda \gamma'$.

Thus $\operatorname{GL}(2, K) \to \operatorname{Aut}(K(x)/K)$ sending γ to σ_{γ} factors through $\operatorname{PGL}(2, K) \to \operatorname{Aut}(K(X)/K)$ and this maps is injective and surjective.