Graduate Algebra Homework 8

Due 2015-04-08

1. Suppose n is an odd integer. Show that $\Phi_{2 n}(X)=\Phi_{n}(-X)$.
2. Let $K=\mathbb{Q}(i, \sqrt[8]{2})$ be the splitting field of $X^{8}-2$ over \mathbb{Q}. Show that $\operatorname{Gal}(K, \mathbb{Q}(i))$ is the cyclic group $\mathbb{Z} / 8 \mathbb{Z}, \operatorname{Gal}(K / \mathbb{Q}(\sqrt{2})) \cong D_{8}$ and $\operatorname{Gal}(K / \mathbb{Q}(i \sqrt{2})) \cong Q_{8}$. [Hint: You might find your job easier if you recall presentations for these groups.]
3. Let $p>2$ be a prime and g a generator of \mathbb{F}_{p}^{\times}. Show that the subextensions $\mathbb{Q}\left(\zeta_{p}\right) / K / \mathbb{Q}$ are all of the form

$$
K_{r}=\mathbb{Q}\left(\sum_{i=1}^{(p-1) / r} \zeta_{p}^{g^{r i}}\right)
$$

where r ranges over the divisors of $p-1$. [Hint: Compute the Galois group of $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / K_{r}\right)$. A straightforward problem.]

