Graduate Algebra Homework 8

Due 2015-04-08

1. Suppose n is an odd integer. Show that $\Phi_{2 n}(X)=\Phi_{n}(-X)$.

Proof. Let $\zeta_{m}=e^{2 \pi i / m}$. Note that $\zeta_{2 n}=-\zeta_{n}$. Chinese remainder gives $(\mathbb{Z} / 2 n \mathbb{Z})^{\times} \cong(\mathbb{Z} / 2 \mathbb{Z})^{\times} \times$ $(\mathbb{Z} / n \mathbb{Z})^{\times}=(\mathbb{Z} / n \mathbb{Z})^{\times}$and so the primitive $2 n$-th roots $=\left\{\zeta_{2 n}^{k} \mid 1 \leq k \leq 2 n,(k, 2 n)=1\right\}=\left\{-\zeta_{n}^{k} \mid 1 \leq\right.$ $k \leq 2 n,(k, 2 n)=1\}=\left\{-\zeta_{n}^{k} \mid 1 \leq k \leq n,(k, n)=1\right\}$. Thus

$$
\Phi_{2 n}(X)=\prod\left(X-\zeta_{2 n}^{k}\right)=\prod\left(X+\zeta_{n}^{k}\right)=(-1)^{\varphi(n)} \prod\left(-X-\zeta_{n}^{k}\right)=(-1)^{\varphi(n)} \Phi_{n}(-X)
$$

thus it suffices to show that $\varphi(n)$ is even. But n is odd and if p^{m} is the largest power of a prime divisor p of n then $\varphi\left(p^{m}\right)=(p-1) p^{m-1} \mid \varphi(n)$ by the Chinese remainder theorem. This is clearly even.
Alternatively you may use the Mobius inversion formula for Φ_{m} to prove the relation by induction.
2. Let $K=\mathbb{Q}(i, \sqrt[8]{2})$ be the splitting field of $X^{8}-2$ over \mathbb{Q}. Show that $\operatorname{Gal}(K, \mathbb{Q}(i))$ is the cyclic group $\mathbb{Z} / 8 \mathbb{Z}, \operatorname{Gal}(K / \mathbb{Q}(\sqrt{2})) \cong D_{8}$ and $\operatorname{Gal}(K / \mathbb{Q}(i \sqrt{2})) \cong Q_{8}$. [Hint: You might find your job easier if you recall presentations for these groups.]

Proof. Note that $\zeta_{8}=(1+i) / \sqrt{2} \in K$ and so K / \mathbb{Q} is Galois. Any $\sigma \in \operatorname{Gal}(K / \mathbb{Q})$ takes $\alpha=\sqrt[8]{2}$ to $\zeta_{8}^{a} \alpha$ and i to $\pm i$.
First, $K=\mathbb{Q}(i) \mathbb{Q}(\alpha)$ and since $\mathbb{Q}(i) / \mathbb{Q}$ is quadratic we deduce that $[K: \mathbb{Q}]=16]$.
$\operatorname{Gal}(K / \mathbb{Q}(i))$. Consider σ taking i to i and α to $\zeta_{8} \alpha$. Then $\sigma \in \operatorname{Gal}(K / \mathbb{Q}(i))$ and σ has order 8. But $[K: \mathbb{Q}(i)]=8$ and so the Galois group is cyclic generated by σ.
$\operatorname{Gal}(K / \mathbb{Q}(\sqrt{2}))$. Let σ take i to $-i$ and fix α and let τ fix i and take α to $i \alpha$. Clearly $\sigma, \tau \in$ $\operatorname{Gal}(K / \mathbb{Q}(\sqrt{2}))$ and $\sigma^{2}=1, \tau^{4}=1$. Also $\sigma \tau \sigma=\tau^{3}($ both fix i and take α to $-i \alpha)$ and so $\langle\sigma, \tau\rangle \cong D_{8}$ is a subgroup of $\operatorname{Gal}(K / \mathbb{Q}(\sqrt{2}))$. Again both have order 8 so they are isomorphic.
$\operatorname{Gal}(K / \mathbb{Q}(i \sqrt{2}))$. Let σ fix i and take α to $i \alpha$ and let τ take i to $-i$ and α to $\zeta_{8} \alpha$. Then it's easy to check that σ and τ fix $i \alpha^{4}=i \sqrt{2}$. Also, $\sigma^{2}=\tau^{2}$ both take i to i and α to $-\alpha$ as $\zeta=(1+i) / \alpha^{4}$. Finally, note that $\sigma \tau \sigma=\tau$ take i to $-i$ and α to $\zeta \alpha$. Finally $\sigma^{4}=\tau^{4}=1$ and so $\langle\sigma \tau\rangle \cong Q_{8}$. Again comparing orders we get the isomorphism.
3. Let $p>2$ be a prime and g a generator of \mathbb{F}_{p}^{\times}. Show that the subextensions $\mathbb{Q}\left(\zeta_{p}\right) / K / \mathbb{Q}$ are all of the form

$$
K_{r}=\mathbb{Q}\left(\sum_{i=1}^{(p-1) / r} \zeta_{p}^{g^{r i}}\right)
$$

where r ranges over the divisors of $p-1$. [Hint: Compute the Galois group of $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / K_{r}\right)$. A straightforward problem.]

Proof. $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}\right) \cong(\mathbb{Z} / p \mathbb{Z})^{\times}$. Suppose $a \in \mathbb{F}_{p}^{\times}$fixes $\sum \zeta_{p}^{g^{r i}}$. Write $a=g^{b}$. Then $\sum \zeta_{p}^{g^{r i}}=\sum \zeta_{p}^{r^{r i+b}}$. Since $\left\{\zeta_{p}^{g^{3}} \mid 0 \leq j<p-1\right\}$ is a basis of $\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}$ it follows that the sets $\left\{g^{r i} \mid 1 \leq i \leq(p-1) / r\right\}$ and $\left\{g^{i r+b} \mid 1 \leq i \leq(p-1) / r\right\}$ are equal. Immediately we deduce that $r \mid b$ and if $r \mid b$ then clearly g^{b} fixes K_{r}. Thus $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / K_{r}\right) \cong\left\langle g^{r}\right\rangle$. The result now follows from the fact that every subgroup of \mathbb{F}_{p}^{\times}is cyclic of the form $\left\langle g^{r}\right\rangle$ for some r.

