# Graduate Algebra Homework 9 

Due 2015-04-15

1. Recall that on the last problem set you showed that $\operatorname{Aut}(K(x) / K) \cong \operatorname{PGL}(2, K)$. Suppose $H \subset$ $\operatorname{PGL}(2, K)$ is a finite subgroup.
(a) Define

$$
f_{H}(Y)=\prod_{h \in H}(Y-h(x)) \in K(x)[Y]
$$

Show that $f_{H}(Y) \in K(x)^{H}[Y]$.
(b) Show that $K(x)^{H}$ is generated over $K$ by the coefficients of $f_{H}(Y)$.
(c) Suppose $K=\mathbb{F}_{2}$. Show that

$$
\mathbb{F}_{2}(x)^{\operatorname{Aut}\left(\mathbb{F}_{2}(x) / \mathbb{F}_{2}\right)}=\mathbb{F}_{2}\left(\frac{\left(x^{2}+x+1\right)^{3}}{x^{2}(x+1)^{2}}\right)
$$

[Hint: Recall from the midterm last semester that PGL $\left(2, \mathbb{F}_{2}\right)=\mathrm{GL}\left(2, \mathbb{F}_{2}\right) \cong S_{3}$. You don't need the computationally intensive part (b), although it would lead to the same answer. Think of part (b) as an algorithm that can be executed on a computer, but not by hand.]

This contrasts well with the setup of finite Galois extensions where the base field is the subfield invariant under the whole Galois group.
2. Let $m>1$ be an integer and $\Phi_{m}(X)$ the $m$-th cyclotomic polynomial.
(a) Let $a \in \mathbb{Z}$ and $p$ a prime divisor of $\Phi_{m}(a)$. Show that either $p \mid m$ or $p \equiv 1(\bmod m)$. [Hint: The polynomial $X^{m}-1$ is separable modulo $p$ if $p \nmid m$. What is the order of $a \bmod p$ ?]
(b) Deduce that there exist infinitely many primes $p \equiv 1(\bmod m)$.
3. Let $P(X)=X^{4}-2 X^{2}-2 \in \mathbb{Q}[X]$.
(a) Show that $P$ is irreducible with roots $\alpha_{ \pm, \pm}= \pm \sqrt{1 \pm \sqrt{3}}$.
(b) Let $K_{1}=\mathbb{Q}\left(\alpha_{+,+}\right)$and $K_{2}=\mathbb{Q}\left(\alpha_{+,-}\right)$. Show that $K_{1} \cap K_{2}=\mathbb{Q}(\sqrt{3})$ and $K_{1} \neq K_{2}$.
(c) Show that $K_{1}, K_{2}, K_{1} K_{2}$ are Galois over $\mathbb{Q}(\sqrt{3})$ and $\operatorname{Gal}\left(K_{1} K_{2} / \mathbb{Q}(\sqrt{3})\right) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$.
(d) Prove that the splitting field $L$ of $P(X)$ over $\mathbb{Q}$ has $\operatorname{Gal}(L / \mathbb{Q}) \cong D_{8}$. [Hint: You need not do any computations for this.]
4. Let $L / K$ be any finite Galois extension and $L / M / K$ a subextension. Let $\alpha \in M$.
(a) Show that the set of embeddings $M \hookrightarrow L$ is in bijection with the quotient set $\operatorname{Gal}(L / K) / \operatorname{Gal}(L / M)$ (which is not a group unless $M / K$ is also Galois).
(b) Define $P_{M / K, \alpha}(X)=\prod_{\sigma: M \hookrightarrow L}(X-\sigma(\alpha))$. Show that $P_{M / K, \alpha}(X) \in K[X]$. Find explicitly $P_{M / K, \alpha}(X)$ when $M / K$ is quadratic.
(c) Show that $P_{M / K, \alpha}(X)=P_{K(\alpha) / K, \alpha}(X)^{[M: K] /[K(\alpha): K]}$.
(d) Define the trace $\operatorname{Tr}_{M / K}(\alpha)=\sum_{\sigma: M \hookrightarrow L} \sigma(\alpha)$ and the norm $N_{M / K}(\alpha)=\prod_{\sigma: M \hookrightarrow L} \sigma(\alpha)$. Show that $\operatorname{Tr}_{M / K}(\alpha+\beta)=\operatorname{Tr}_{M / K}(\alpha)+\operatorname{Tr}_{M / K}(\beta)$ and $N_{M / K}(\alpha \beta)=N_{M / K}(\alpha) N_{M / K}(\beta)$.
(e) If $\alpha$ has minimal polynomial $X^{d}+a_{d-1} X^{d-1}+\cdots+a_{0} \in K[X]$ show that $\operatorname{Tr}_{M / K}(\alpha)=-a_{d-1}[M$ : $K] / d$ and $N_{M / K}(\alpha)=(-1)^{d} a_{0}^{[M: K] / d}$. [Hint: Use (c).]

