Graduate Algebra Homework 9

Due 2015-04-15

1. Recall that on the last problem set you showed that $\operatorname{Aut}(K(x) / K) \cong \operatorname{PGL}(2, K)$. Suppose $H \subset$ $\operatorname{PGL}(2, K)$ is a finite subgroup.
(a) Define

$$
f_{H}(Y)=\prod_{h \in H}(Y-h(x)) \in K(x)[Y]
$$

Show that $f_{H}(Y) \in K(x)^{H}[Y]$.
(b) Show that $K(x)^{H}$ is generated over K by the coefficients of $f_{H}(Y)$.
(c) Suppose $K=\mathbb{F}_{2}$. Show that

$$
\mathbb{F}_{2}(x)^{\operatorname{Aut}\left(\mathbb{F}_{2}(x) / \mathbb{F}_{2}\right)}=\mathbb{F}_{2}\left(\frac{\left(x^{2}+x+1\right)^{3}}{x^{2}(x+1)^{2}}\right)
$$

[Hint: Recall from the midterm last semester that $\operatorname{PGL}\left(2, \mathbb{F}_{2}\right)=\mathrm{GL}\left(2, \mathbb{F}_{2}\right) \cong S_{3}$. You don't need the computationally intensive part (b), although it would lead to the same answer. Think of part (b) as an algorithm that can be executed on a computer, but not by hand.]

This contrasts well with the setup of finite Galois extensions where the base field is the subfield invariant under the whole Galois group.

Proof. (1): If $g \in H$ then $g\left(f_{H}(Y)\right)=\prod(Y-g h(x))=f_{H}(Y)$ as multiplication by g permutes H. Thus $f_{H}(X) \in K(x)[Y]^{H}=K(x)^{H}[Y]$.
(2): Write L for the field generated by the coefficients of $f_{H}(X)$. Part (1) gives $L \subset K(x)^{H}$. Then $K(x)$ is the splitting field of $f_{H}(Y)$ over L. Clearly H acts transitively on the roots of $f_{H}(Y)$ (by definition) and so $f_{H}(Y)$ is irreducible over L. Indeed, otherwise H would permute the roots of the irreducible factors of $f_{H}(Y)$ but would not be able to take the root of one irreducible factor to a root of another. Thus $K(X)$ is the splitting field of the irreducible polynomial $f_{H}(Y)$ over L.
Now $[K(x): L]=\operatorname{deg} f_{H}(Y)$ since $K(x)$ is generated by a single root. But also H is finite so $\left[K(x): K(x)^{H}\right]=|H|$ from the theorem proven in class. Since these two orders are equal we deduce $K(x)^{H}=L$ as desired.
(3): Since $\mathrm{GL}\left(2, \mathbb{F}_{2}\right) \cong S_{3}$ it is generated by $\left(\begin{array}{ll} & 1 \\ 1 & 1\end{array}\right)$ and $\left(\begin{array}{ll} & 1 \\ 1 & \end{array}\right)$. These correspond to $x \mapsto 1 /(x+1)$ and $x \mapsto 1 / x$. Certainly $R(x)=\frac{\left(x^{2}+x+1\right)^{3}}{x^{2}(x+1)^{2}}$ is invaried by both and so $K(R(x)) \subset K(x)^{\text {Aut }}$. From the technical theorem in class we deduce that $\left[K(x): K(x)^{\text {Aut }}\right]=\mid$ Aut $\mid=6$ and from the homework $[K(x): K(R(x))]=6$ (the max degree of numerator and denominator) and so we conclude that $K(R(x))=K(x)^{\text {Aut }}$.
2. Let $m>1$ be an integer and $\Phi_{m}(X)$ the m-th cyclotomic polynomial.
(a) Let $a \in \mathbb{Z}$ and p a prime divisor of $\Phi_{m}(a)$. Show that either $p \mid m$ or $p \equiv 1(\bmod m)$. [Hint: The polynomial $X^{m}-1$ is separable modulo p if $p \nmid m$. What is the order of $a \bmod p$?]
(b) Deduce that there exist infinitely many primes $p \equiv 1(\bmod m)$.

Proof. (1): Suppose $p \nmid m$. Then $\left(X^{m}-1\right)^{\prime}=m X^{m-1}$ which is coprime to $X^{m}-1 \bmod p$ and so $X^{m}-1$ is separable $\bmod p$. Recall that $X^{m}-1=\prod_{d \mid m} \Phi_{d}(X)$ and so $a^{m}-1=\Phi_{m}(a) \prod_{d \mid m, d<m} \Phi_{d}(a) \equiv 0$ $(\bmod p)$. But all the roots of $X^{m}-1$ are distinct and $\Phi_{m}(a) \equiv 0(\bmod p)$ and so $p \nmid \Phi_{d}(a)$ for $d \mid m, d<m$. Thus a is a primitive m-th root $\bmod p$ and so $\operatorname{ord}(a)=m \mid p-1$ as desired.
(2): It suffices to show that $\Phi_{m}(a)$ have infinitely many prime divisors as a varies. Suppose this is not true and list all such primes p_{1}, \ldots, p_{s}. Then for each $r \in \mathbb{Z}, \Phi_{m}\left(r p_{1} \cdots p_{s}\right) \in \mathbb{Z}$ is coprime to $p_{1} \cdots p_{m}$ as it divides $\left(r p_{1} \cdots p_{s}\right)^{m}-1$. Therefore it must have a prime factor not among the p_{i} as long as $\Phi_{m}\left(r p_{1} \cdots p_{s}\right) \neq \pm 1$. But $\Phi_{m}\left(r p_{1} \cdots p_{s}\right)$ is a polynomial in r and so for some choice of r we have $\Phi_{m}\left(r p_{1} \cdots p_{s}\right)>1$.
3. Let $P(X)=X^{4}-2 X^{2}-2 \in \mathbb{Q}[X]$.
(a) Show that P is irreducible with roots $\alpha_{ \pm, \pm}= \pm \sqrt{1 \pm \sqrt{3}}$.
(b) Let $K_{1}=\mathbb{Q}\left(\alpha_{+,+}\right)$and $K_{2}=\mathbb{Q}\left(\alpha_{+,-}\right)$. Show that $K_{1} \cap K_{2}=\mathbb{Q}(\sqrt{3})$ and $K_{1} \neq K_{2}$.
(c) Show that $K_{1}, K_{2}, K_{1} K_{2}$ are Galois over $\mathbb{Q}(\sqrt{3})$ and $\operatorname{Gal}\left(K_{1} K_{2} / \mathbb{Q}(\sqrt{3})\right) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$.
(d) Prove that the splitting field L of $P(X)$ over \mathbb{Q} has $\operatorname{Gal}(L / \mathbb{Q}) \cong D_{8}$. [Hint: You need not do any computations for this.]

Proof. (1): It's irreducible by Eisenstein. Note that $P(X)=\left(X^{2}-1\right)^{2}-3$ and the roots are now obvious.
(2): Certainly $\alpha_{+, \pm}^{2} \in \mathbb{Q}(\sqrt{3})$ and so $\mathbb{Q}(\sqrt{3}) \subset K_{1} \cap K_{2}$. Since $\left[K_{1}: \mathbb{Q}\right]=\left[K_{2}: \mathbb{Q}\right]=4$ the only way the intersection is not $\mathbb{Q}(\sqrt{3})$ is if $K_{1}=K_{2}$. But $\alpha_{ \pm,+} \in \mathbb{R}$ while $\alpha_{ \pm,-} \in \mathbb{C}-\mathbb{R}$ and so we get a contradiction.
(3): K_{1}, K_{2} are quadratic over $\mathbb{Q}(\sqrt{3})=K_{1} \cap K_{2}$ and so are Galois with Galois group $\mathbb{Z} / 2 \mathbb{Z}$, the only group of order 2. The result from class gives that $K_{1} K_{2} / \mathbb{Q}(\sqrt{3})$ is also Galois and since $K_{1} \cap K_{2}=$ $\mathbb{Q}(\sqrt{3})$ we have $\operatorname{Gal}\left(K_{1} K_{2} / \mathbb{Q}(\sqrt{3})\right) \cong \operatorname{Gal}\left(K_{1} / \mathbb{Q}(\sqrt{3})\right) \times \operatorname{Gal}\left(K_{2} / \mathbb{Q}(\sqrt{3})\right) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$.
(4): Since $\alpha_{ \pm, \pm}= \pm \alpha_{+, \pm}$it follows that $L=K_{1} K_{2}$ which is then Galois over \mathbb{Q}. We need to compute $\Gamma=\operatorname{Gal}\left(K_{1} K_{2} / \mathbb{Q}\right)$. We know that $\operatorname{Gal}\left(K_{1} K_{2} / \mathbb{Q}(\sqrt{3})\right)$ is a normal subgroup of Γ as $\mathbb{Q}(\sqrt{3}) / \mathbb{Q}$ is clearly Galois. Moreover we know that Γ has order 8.
From the first semester we know that Γ is one of $\mathbb{Z} / 8 \mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z},(\mathbb{Z} / 2 \mathbb{Z})^{3}, D_{8}$ and Q_{8}. We can eliminate the abelian groups and Q_{8} because their subgroups are all normal (for abelian clear; for Q_{8} homework from last semester) and that would imply that K_{1} / \mathbb{Q} is Galois (main theorem B form class), which it clearly is not as it is not normal (not all roots of P are in K_{1}).

Thus $\Gamma=\operatorname{Gal}\left(K_{1} K_{2} / \mathbb{Q}\right) \cong D_{8}$.
4. Let L / K be any finite Galois extension and $L / M / K$ a subextension. Let $\alpha \in M$.
(a) Show that the set of embeddings $M \hookrightarrow L$ is in bijection with the quotient set $\operatorname{Gal}(L / K) / \operatorname{Gal}(L / M)$ (which is not a group unless M / K is also Galois).
(b) Define $P_{M / K, \alpha}(X)=\prod_{\sigma: M \hookrightarrow L}(X-\sigma(\alpha))$. Show that $P_{M / K, \alpha}(X) \in K[X]$. Find explicitly $P_{M / K, \alpha}(X)$ when M / K is quadratic.
(c) Show that $P_{M / K, \alpha}(X)=P_{K(\alpha) / K, \alpha}(X)^{[M: K] /[K(\alpha): K]}$.
(d) Define the trace $\operatorname{Tr}_{M / K}(\alpha)=\sum_{\sigma: M \hookrightarrow L} \sigma(\alpha)$ and the norm $N_{M / K}(\alpha)=\prod_{\sigma: M \hookrightarrow L} \sigma(\alpha)$. Show that $\operatorname{Tr}_{M / K}(\alpha+\beta)=\operatorname{Tr}_{M / K}(\alpha)+\operatorname{Tr}_{M / K}(\beta)$ and $N_{M / K}(\alpha \beta)=N_{M / K}(\alpha) N_{M / K}(\beta)$.
(e) If α has minimal polynomial $X^{d}+a_{d-1} X^{d-1}+\cdots+a_{0} \in K[X]$ show that $\operatorname{Tr}_{M / K}(\alpha)=-a_{d-1}[M$: $K] / d$ and $N_{M / K}(\alpha)=(-1)^{d} a_{0}^{[M: K] / d}$. [Hint: Use (c).]

Proof. (1): Since L / K is normal and separable from class we know that every embedding $M \hookrightarrow L$ extends to $L \hookrightarrow L$ which is then an element of $\operatorname{Gal}(L / K)$. Two such automorphisms f and g restrict to the same embedding $M \hookrightarrow L$ if and only if $f g^{-1}$ restricts to the identity $M \cong M \subset L$, i.e., iff $f g^{-1} \operatorname{Gal}(L / M)$. The result follows.
(2): Let $\tau \in \operatorname{Gal}(L / K)$. Part (1) shows that multiplication by τ permutes the set of embedding $M \hookrightarrow L$ as it permutes the quotient set $\operatorname{Gal}(L / K) / \operatorname{Gal}(L / M)$. Thus

$$
\tau\left(P_{M / K, \alpha}(X)\right)=\prod_{\sigma}(X-\tau \sigma(\alpha))=\prod_{\sigma}(X-\sigma(\alpha))=P_{M / K, \alpha}(X)
$$

and so $P_{M / K, \alpha}(X) \in L[X]^{\operatorname{Gal}(L / K)}=K[X]$ from main theorem A.
If M / K is quadratic then $\operatorname{Gal}(L / M)$ has index $2 \operatorname{in} \operatorname{Gal}(L / K)$ and so it is Galois. We deduce that there are two embeddings $M \hookrightarrow L$ namely $\operatorname{Gal}(M / K) \cong \operatorname{Gal}(L / K) / \operatorname{Gal}(L / M)$. Explicitly, if $M=K(\beta)$ where β satisfies a quadratic equation $X^{2}-a X+b=0$ with distinct roots $\beta, a-\beta$ then the two automorphisms are the identity and the map taking β to $a-\beta$. Write $\alpha=u+v \beta \in K[\beta]$ with $u, v \in K$. Then

$$
P_{M / K, \alpha}(X)=(X-(u+v \beta))(X-(u+v(a-\beta)))=X^{2}-(2 u+a v) X+u^{2}+u v a+v^{2} b
$$

In characteristic not 2 we can write $M=K(\sqrt{d})$ for some $d \in K-K^{2}$ in which case $P_{M / K, u+v \sqrt{d}}(X)=$ $X^{2}-2 u X+u^{2}-d v^{2}$.
(3): From the definition

$$
P_{M / K, \alpha}(X)=\prod_{\sigma \in \operatorname{Gal}(L / K) / \operatorname{Gal}(L / M)}(X-\sigma(\alpha))
$$

but $\sigma(\alpha)=\tau(\alpha)$ iff $\sigma \tau^{-1} \in \operatorname{Gal}(L / K(\alpha))$. If $K \subset H \subset G$ are groups then $G / K=\sqcup_{H / K} G / H$ as a disjoint union of sets. Indeed, writing $H=\sqcup h_{i} K$ and $G=\sqcup g_{i} H$ then $G=\sqcup g_{i} h_{j} K$ and $\left\{g_{i} h_{j}\right\}=\sqcup_{h_{j}}\left\{g_{i}\right\} \cdot h_{j}$. Apply to $G=\operatorname{Gal}(L / K), H=\operatorname{Gal}(L / K(\alpha))$ and $K=\operatorname{Gal}(L / M)$ (sorry for the double use of K) then

$$
\begin{aligned}
P_{M / K, \alpha}(X) & =\prod_{\sigma \in \operatorname{Gal}(L / K) / \operatorname{Gal}(L / K(\alpha)), \tau \in \operatorname{Gal}(L / K(\alpha)) / \operatorname{Gal}(L / M)}(X-\sigma \tau(\alpha)) \\
& =\prod_{\sigma \in \operatorname{Gal}(L / K) / \operatorname{Gal}(L / K(\alpha)), \tau \in \operatorname{Gal}(L / K(\alpha)) / \operatorname{Gal}(L / M)}(X-\tau(\alpha)) \\
& =P_{K(\alpha) / K, \alpha}(X)^{|\operatorname{Gal}(L / K(\alpha)) / \operatorname{Gal}(L / M)|} \\
& =P_{K(\alpha) / K, \alpha}(X)^{[M: K(\alpha)]}
\end{aligned}
$$

as desired.
(4): Since σ is additive it follows trivially that Tr is additive. Since σ is multiplicative it follows trivially that N is multiplicative.
(5): Since L / K is Galois all the roots of $\min _{\alpha}(X)$ are in L and each root yields an embedding $K(\alpha) \hookrightarrow$ L. Let $\alpha_{1}=\alpha, \alpha_{2}, \ldots, \alpha_{d}$ be the roots of $\min _{\alpha}(X)$. Then

$$
P_{K(\alpha) / K, \alpha}(X)=\left(X-\alpha_{1}\right) \cdots\left(X-\alpha_{d}\right)=\min _{\alpha}(X)
$$

This implies that $P_{M / K, \alpha}(X)=\min _{\alpha}(X)^{[M: K(\alpha)]}$. But if

$$
P_{M / K, \alpha}(X)=X^{n}+s_{1} X^{n-1}+\cdots+s_{n}
$$

then $-s_{1}=\sum \sigma(\alpha)=\operatorname{Tr}_{M / K}(\alpha)$ and $(-1)^{n} s_{n}=\prod \sigma(\alpha)=N_{M / K}(\alpha)$.
Finally,

$$
X^{n}+s_{1} X^{n-1}+\cdots+s_{n}=\left(X^{d}+a_{d-1} X^{d-1}+\cdots+a_{0}\right)^{n / d}
$$

and breaking up the parantheses we get $s_{1}=(n / d) a_{d-1}$ and $s_{n}=a_{0}^{n / d}$. The result follows.

