
Graduate Algebra

Homework 9

Due 2015-04-15

1. Recall that on the last problem set you showed that Aut(K(x)/K) ∼= PGL(2,K). Suppose H ⊂
PGL(2,K) is a finite subgroup.

(a) Define

fH(Y ) =
∏
h∈H

(Y − h(x)) ∈ K(x)[Y ]

Show that fH(Y ) ∈ K(x)H [Y ].

(b) Show that K(x)H is generated over K by the coefficients of fH(Y ).

(c) Suppose K = F2. Show that

F2(x)Aut(F2(x)/F2) = F2

(
(x2 + x+ 1)3

x2(x+ 1)2

)
[Hint: Recall from the midterm last semester that PGL(2,F2) = GL(2,F2) ∼= S3. You don’t need
the computationally intensive part (b), although it would lead to the same answer. Think of part
(b) as an algorithm that can be executed on a computer, but not by hand.]

This contrasts well with the setup of finite Galois extensions where the base field is the subfield invariant
under the whole Galois group.

Proof. (1): If g ∈ H then g(fH(Y )) =
∏

(Y − gh(x)) = fH(Y ) as multiplication by g permutes H.
Thus fH(X) ∈ K(x)[Y ]H = K(x)H [Y ].

(2): Write L for the field generated by the coefficients of fH(X). Part (1) gives L ⊂ K(x)H . Then
K(x) is the splitting field of fH(Y ) over L. Clearly H acts transitively on the roots of fH(Y ) (by
definition) and so fH(Y ) is irreducible over L. Indeed, otherwise H would permute the roots of the
irreducible factors of fH(Y ) but would not be able to take the root of one irreducible factor to a root
of another. Thus K(X) is the splitting field of the irreducible polynomial fH(Y ) over L.

Now [K(x) : L] = deg fH(Y ) since K(x) is generated by a single root. But also H is finite so
[K(x) : K(x)H ] = |H| from the theorem proven in class. Since these two orders are equal we deduce
K(x)H = L as desired.

(3): Since GL(2,F2) ∼= S3 it is generated by

(
1

1 1

)
and

(
1

1

)
. These correspond to x 7→ 1/(x+ 1)

and x 7→ 1/x. Certainly R(x) = (x2+x+1)3

x2(x+1)2 is invaried by both and so K(R(x)) ⊂ K(x)Aut. From

the technical theorem in class we deduce that [K(x) : K(x)Aut] = |Aut | = 6 and from the homework
[K(x) : K(R(x))] = 6 (the max degree of numerator and denominator) and so we conclude that
K(R(x)) = K(x)Aut.

2. Let m > 1 be an integer and Φm(X) the m-th cyclotomic polynomial.
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(a) Let a ∈ Z and p a prime divisor of Φm(a). Show that either p | m or p ≡ 1 (mod m). [Hint: The
polynomial Xm − 1 is separable modulo p if p - m. What is the order of a mod p?]

(b) Deduce that there exist infinitely many primes p ≡ 1 (mod m).

Proof. (1): Suppose p - m. Then (Xm−1)′ = mXm−1 which is coprime to Xm−1 mod p and so Xm−1
is separable mod p. Recall that Xm − 1 =

∏
d|m Φd(X) and so am − 1 = Φm(a)

∏
d|m,d<m Φd(a) ≡ 0

(mod p). But all the roots of Xm − 1 are distinct and Φm(a) ≡ 0 (mod p) and so p - Φd(a) for
d | m, d < m. Thus a is a primitive m-th root mod p and so ord(a) = m | p− 1 as desired.

(2): It suffices to show that Φm(a) have infinitely many prime divisors as a varies. Suppose this is
not true and list all such primes p1, . . . , ps. Then for each r ∈ Z, Φm(rp1 · · · ps) ∈ Z is coprime to
p1 · · · pm as it divides (rp1 · · · ps)m−1. Therefore it must have a prime factor not among the pi as long
as Φm(rp1 · · · ps) 6= ±1. But Φm(rp1 · · · ps) is a polynomial in r and so for some choice of r we have
Φm(rp1 · · · ps) > 1.

3. Let P (X) = X4 − 2X2 − 2 ∈ Q[X].

(a) Show that P is irreducible with roots α±,± = ±
√

1±
√

3.

(b) Let K1 = Q(α+,+) and K2 = Q(α+,−). Show that K1 ∩K2 = Q(
√

3) and K1 6= K2.

(c) Show that K1,K2,K1K2 are Galois over Q(
√

3) and Gal(K1K2/Q(
√

3)) ∼= (Z/2Z)2.

(d) Prove that the splitting field L of P (X) over Q has Gal(L/Q) ∼= D8. [Hint: You need not do any
computations for this.]

Proof. (1): It’s irreducible by Eisenstein. Note that P (X) = (X2 − 1)2 − 3 and the roots are now
obvious.

(2): Certainly α2
+,± ∈ Q(

√
3) and so Q(

√
3) ⊂ K1 ∩K2. Since [K1 : Q] = [K2 : Q] = 4 the only way

the intersection is not Q(
√

3) is if K1 = K2. But α±,+ ∈ R while α±,− ∈ C − R and so we get a
contradiction.

(3): K1,K2 are quadratic over Q(
√

3) = K1 ∩K2 and so are Galois with Galois group Z/2Z, the only
group of order 2. The result from class gives that K1K2/Q(

√
3) is also Galois and since K1 ∩K2 =

Q(
√

3) we have Gal(K1K2/Q(
√

3)) ∼= Gal(K1/Q(
√

3))×Gal(K2/Q(
√

3)) ∼= (Z/2Z)2.

(4): Since α±,± = ±α+,± it follows that L = K1K2 which is then Galois over Q. We need to compute
Γ = Gal(K1K2/Q). We know that Gal(K1K2/Q(

√
3)) is a normal subgroup of Γ as Q(

√
3)/Q is clearly

Galois. Moreover we know that Γ has order 8.

From the first semester we know that Γ is one of Z/8Z, Z/2Z × Z/4Z, (Z/2Z)3, D8 and Q8. We can
eliminate the abelian groups and Q8 because their subgroups are all normal (for abelian clear; for Q8

homework from last semester) and that would imply that K1/Q is Galois (main theorem B form class),
which it clearly is not as it is not normal (not all roots of P are in K1).

Thus Γ = Gal(K1K2/Q) ∼= D8.

4. Let L/K be any finite Galois extension and L/M/K a subextension. Let α ∈M .

(a) Show that the set of embeddingsM ↪→ L is in bijection with the quotient set Gal(L/K)/Gal(L/M)
(which is not a group unless M/K is also Galois).

(b) Define PM/K,α(X) =
∏
σ:M↪→L(X − σ(α)). Show that PM/K,α(X) ∈ K[X]. Find explicitly

PM/K,α(X) when M/K is quadratic.

(c) Show that PM/K,α(X) = PK(α)/K,α(X)[M :K]/[K(α):K].

(d) Define the trace TrM/K(α) =
∑
σ:M↪→L σ(α) and the norm NM/K(α) =

∏
σ:M↪→L σ(α). Show

that TrM/K(α+ β) = TrM/K(α) + TrM/K(β) and NM/K(αβ) = NM/K(α)NM/K(β).

2



(e) If α has minimal polynomial Xd+ad−1X
d−1+ · · ·+a0 ∈ K[X] show that TrM/K(α) = −ad−1[M :

K]/d and NM/K(α) = (−1)da
[M :K]/d
0 . [Hint: Use (c).]

Proof. (1): Since L/K is normal and separable from class we know that every embedding M ↪→ L
extends to L ↪→ L which is then an element of Gal(L/K). Two such automorphisms f and g restrict
to the same embedding M ↪→ L if and only if fg−1 restricts to the identity M ∼= M ⊂ L, i.e., iff
fg−1 Gal(L/M). The result follows.

(2): Let τ ∈ Gal(L/K). Part (1) shows that multiplication by τ permutes the set of embedding M ↪→ L
as it permutes the quotient set Gal(L/K)/Gal(L/M). Thus

τ(PM/K,α(X)) =
∏
σ

(X − τσ(α)) =
∏
σ

(X − σ(α)) = PM/K,α(X)

and so PM/K,α(X) ∈ L[X]Gal(L/K) = K[X] from main theorem A.

If M/K is quadratic then Gal(L/M) has index 2 in Gal(L/K) and so it is Galois. We deduce that there
are two embeddings M ↪→ L namely Gal(M/K) ∼= Gal(L/K)/Gal(L/M). Explicitly, if M = K(β)
where β satisfies a quadratic equation X2 − aX + b = 0 with distinct roots β, a − β then the two
automorphisms are the identity and the map taking β to a − β. Write α = u + vβ ∈ K[β] with
u, v ∈ K. Then

PM/K,α(X) = (X − (u+ vβ))(X − (u+ v(a− β))) = X2 − (2u+ av)X + u2 + uva+ v2b

In characteristic not 2 we can write M = K(
√
d) for some d ∈ K−K2 in which case PM/K,u+v

√
d(X) =

X2 − 2uX + u2 − dv2.

(3): From the definition

PM/K,α(X) =
∏

σ∈Gal(L/K)/Gal(L/M)

(X − σ(α))

but σ(α) = τ(α) iff στ−1 ∈ Gal(L/K(α)). If K ⊂ H ⊂ G are groups then G/K = tH/KG/H
as a disjoint union of sets. Indeed, writing H = thiK and G = tgiH then G = tgihjK and
{gihj} = thj

{gi} · hj . Apply to G = Gal(L/K), H = Gal(L/K(α)) and K = Gal(L/M) (sorry for the
double use of K) then

PM/K,α(X) =
∏

σ∈Gal(L/K)/Gal(L/K(α)),τ∈Gal(L/K(α))/Gal(L/M)

(X − στ(α))

=
∏

σ∈Gal(L/K)/Gal(L/K(α)),τ∈Gal(L/K(α))/Gal(L/M)

(X − τ(α))

= PK(α)/K,α(X)|Gal(L/K(α))/Gal(L/M)|

= PK(α)/K,α(X)[M :K(α)]

as desired.

(4): Since σ is additive it follows trivially that Tr is additive. Since σ is multiplicative it follows trivially
that N is multiplicative.

(5): Since L/K is Galois all the roots of minα(X) are in L and each root yields an embedding K(α) ↪→
L. Let α1 = α, α2, . . . , αd be the roots of minα(X). Then

PK(α)/K,α(X) = (X − α1) · · · (X − αd) = min
α

(X)
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This implies that PM/K,α(X) = minα(X)[M :K(α)]. But if

PM/K,α(X) = Xn + s1X
n−1 + · · ·+ sn

then −s1 =
∑
σ(α) = TrM/K(α) and (−1)nsn =

∏
σ(α) = NM/K(α).

Finally,
Xn + s1X

n−1 + · · ·+ sn = (Xd + ad−1X
d−1 + · · ·+ a0)n/d

and breaking up the parantheses we get s1 = (n/d)ad−1 and sn = a
n/d
0 . The result follows.
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