Graduate Algebra
 Homework 10

Due 2015-04-22

1. (a) Let p be a prime and $n \geq 1$. Show that there exists a subextension $\mathbb{Q}\left(\zeta_{p^{n+2}}\right) / K / \mathbb{Q}$ with $\operatorname{Gal}(K / \mathbb{Q}) \cong \mathbb{Z} / p^{n} \mathbb{Z}$.
(b) Let G be any finite abelian group. Show there exists a Galois extension K / \mathbb{Q} with $\operatorname{Gal}(K / \mathbb{Q}) \cong G$.
2. (a) Show that the discriminant of the polynomial $X^{n}+p X+q$ is

$$
(-1)^{\binom{n}{2}} n^{n} q^{n-1}+(-1){ }^{\binom{n-1}{2}}(n-1)^{n-1} p^{n}
$$

(b) If $p>2$ is a prime show that $\mathbb{Q}\left(\sqrt{(-1)^{(p-1) / 2} p}\right) \subset \mathbb{Q}\left(\zeta_{p}\right)$. [Hint: Compute the discriminant of $X^{p}-1$.]
3. (a) Let $P(X) \in \mathbb{Q}[X]$ be irreducible with prime degree q and exactly two nonreal roots. Show that P has Galois group S_{q}. [Hint: S_{q} is generated by a transposition and a q-cycle.]
(b) Compute the Galois group of $X^{7}+X+13 \in \mathbb{Q}[X]$. [Hint: You are welcome to use Wolfram Alpha for factorizations. Also, the answer is nice.]
4. Let $L / K / \mathbb{Q}$ be finite extensions and denote by R and S the integral closure of \mathbb{Z} in K and L respectively.
(a) Show that $\operatorname{Tr}_{L / K}: L \rightarrow K$ restricts to $\operatorname{Tr}_{L / K}: S \rightarrow R$.
(b) Show that $\mathcal{I D}=\left\{x \in L \mid \operatorname{Tr}_{L / K}(x S) \subset R\right\}$ is an S-submodle of L and that $\mathcal{D}=\{x \in S \mid x \mathcal{I D} \subset S\}$ is an ideal of S.
(c) Suppose $K=\mathbb{Q}$ and so $R=\mathbb{Z}$. Also suppose that $L=\mathbb{Q}(\alpha)$ and $S=\mathbb{Z}[\alpha]$ and let $m_{\alpha}(X) \in \mathbb{Z}[X]$ be its minimal polynomial over \mathbb{Z}, of degree d.
i. Show that $\frac{1}{m_{\alpha}(X)} \in X^{-d}\left(1+X^{-1} \mathbb{Z} \llbracket X^{-1} \rrbracket\right)$.
ii. Show that $\frac{1}{m_{\alpha}(X)}=\sum_{i=1}^{d} \frac{1}{m_{\alpha}^{\prime}\left(\alpha_{i}\right)\left(X-\alpha_{i}\right)}$ where $\alpha_{1}=\alpha, \alpha_{2}, \ldots, \alpha_{d}$ are the roots of $m_{\alpha}(X)$. Conclude that $\frac{1}{m_{\alpha}(X)}=\sum_{n \geq 1} X^{-n} \operatorname{Tr}_{\mathbb{Q}(\alpha) / \mathbb{Q}}\left(\frac{\alpha^{n-1}}{m_{\alpha}^{\prime}(\alpha)}\right)$.
iii. Show that

$$
\operatorname{Tr}_{\mathbb{Q}(\alpha) / \mathbb{Q}}\left(\frac{\alpha^{n}}{m_{\alpha}^{\prime}(\alpha)}\right)= \begin{cases}0 & 0 \leq n<d-1 \\ 1 & n=d-1 \\ \in \mathbb{Z} & n \geq d\end{cases}
$$

[Hint: One line proof.]
iv. Deduce that $m_{\alpha}^{\prime}(\alpha) \in \mathcal{D}$. (One can actually show that \mathcal{D} is generated by $m_{\alpha}^{\prime}(\alpha)$.) [Hint: Use (iii).]

It turns out that the ideal \mathcal{D} is the annihilator of the module $\Omega_{S / R}^{1}$ that you studied in a previous homework. It measures ramification.

