Graduate Algebra Homework 10

Due 2015-04-22

- 1. (a) Let p be a prime and $n \ge 1$. Show that there exists a subextension $\mathbb{Q}(\zeta_{p^{n+2}})/K/\mathbb{Q}$ with $\operatorname{Gal}(K/\mathbb{Q}) \cong \mathbb{Z}/p^n\mathbb{Z}$.
 - (b) Let G be any finite abelian group. Show there exists a Galois extension K/\mathbb{Q} with $\operatorname{Gal}(K/\mathbb{Q}) \cong G$.
- 2. (a) Show that the discriminant of the polynomial $X^n + pX + q$ is

$$(-1)^{\binom{n}{2}}n^nq^{n-1} + (-1)^{\binom{n-1}{2}}(n-1)^{n-1}p^n$$

- (b) If p > 2 is a prime show that $\mathbb{Q}(\sqrt{(-1)^{(p-1)/2}p}) \subset \mathbb{Q}(\zeta_p)$. [Hint: Compute the discriminant of $X^p 1$.]
- 3. (a) Let $P(X) \in \mathbb{Q}[X]$ be irreducible with prime degree q and exactly two nonreal roots. Show that P has Galois group S_q . [Hint: S_q is generated by a transposition and a q-cycle.]
 - (b) Compute the Galois group of $X^7 + X + 13 \in \mathbb{Q}[X]$. [Hint: You are welcome to use Wolfram Alpha for factorizations. Also, the answer is nice.]
- 4. Let $L/K/\mathbb{Q}$ be finite extensions and denote by R and S the integral closure of \mathbb{Z} in K and L respectively.
 - (a) Show that $\operatorname{Tr}_{L/K} : L \to K$ restricts to $\operatorname{Tr}_{L/K} : S \to R$.
 - (b) Show that $\mathcal{ID} = \{x \in L | \operatorname{Tr}_{L/K}(xS) \subset R\}$ is an S-submodel of L and that $\mathcal{D} = \{x \in S | x\mathcal{ID} \subset S\}$ is an ideal of S.
 - (c) Suppose $K = \mathbb{Q}$ and so $R = \mathbb{Z}$. Also suppose that $L = \mathbb{Q}(\alpha)$ and $S = \mathbb{Z}[\alpha]$ and let $m_{\alpha}(X) \in \mathbb{Z}[X]$ be its minimal polynomial over \mathbb{Z} , of degree d.
 - i. Show that $\frac{1}{m_{\alpha}(X)} \in X^{-d}(1 + X^{-1}\mathbb{Z}\llbracket X^{-1} \rrbracket).$ ii. Show that $\frac{1}{m_{\alpha}(X)} = \sum_{i=1}^{d} \frac{1}{m'_{\alpha}(\alpha_i)(X - \alpha_i)}$ where $\alpha_1 = \alpha, \alpha_2, \dots, \alpha_d$ are the roots of $m_{\alpha}(X).$ Conclude that $\frac{1}{m_{\alpha}(X)} = \sum_{n \ge 1} X^{-n} \operatorname{Tr}_{\mathbb{Q}(\alpha)/\mathbb{Q}}\left(\frac{\alpha^{n-1}}{m'_{\alpha}(\alpha)}\right).$
 - iii. Show that

$$\operatorname{Tr}_{\mathbb{Q}(\alpha)/\mathbb{Q}}\left(\frac{\alpha^n}{m'_{\alpha}(\alpha)}\right) = \begin{cases} 0 & 0 \le n < d-1\\ 1 & n = d-1\\ \in \mathbb{Z} & n \ge d \end{cases}$$

[Hint: One line proof.]

iv. Deduce that $m'_{\alpha}(\alpha) \in \mathcal{D}$. (One can actually show that \mathcal{D} is generated by $m'_{\alpha}(\alpha)$.) [Hint: Use (iii).]

It turns out that the ideal \mathcal{D} is the annihilator of the module $\Omega^1_{S/R}$ that you studied in a previous homework. It measures ramification.