1.

Graduate Algebra
Homework 10

Due 2015-04-22

(a) Let p be a prime and n > 1. Show that there exists a subextension Q((yn+2)/K/Q with
Gal(K/Q) = Z/p"Z.
(b) Let G be any finite abelian group. Show there exists a Galois extension K/Q with Gal(K/Q) = G

Proof. (1): Note that Gal(Q((yn+2)/Q) = (Z/p™*2Z)* which always has as a subquotient Z/p"Z.
Indeed, if p > 2 then (Z/p"*2Z)* = Z/(p — \)p" " Z=2Z)(p — 1)Z x Z/p" ' Z — Z/p" 7 — Z/p" L.
If p = 2 then (Z/2"+22)% = /2 x Z,/2"7 — 7,/2"Z.

Let G be the kernel of this surjection in which case Gal(Q((yn+2)¢/Q) = Z/p"Z from Galois theory.
(2): If G is finite abelian write G = Z/p{'Z x --- x Z/pp*7Z. Let K; C Q(C ni+2) be the subfield from

above such that Gal(K;/Q) = Z/p;*Z. Then K;NK; = Q because [K; N K Q] | (K :Ql,[K,:Q]) =
(p?",p?j) = 1. Then K; --- K is Galois over Q Wlth Galois group Gal(H K;/Q) 2 [[Gal(K;/Q) =

[[Z/p*Z = G as desired. O
(a) Show that the discriminant of the polynomial X™ + pX + ¢ is
(D)@t () -1

(b) If p > 2 is a prime show that Q(1/(—1)—1/2p) C Q(¢,). [Hint: Compute the discriminant of

XP—1]
Proof. (1): From class D = (— ) >Hz f'(e). But f'(o;) = na?t +pand o' = —p —qa; "
f(@i) = n(=p—q/ai) +p = (n = Dp/ai(=c; —qn/((n —1)p)).
Thus

since [Ja; = (—1)"qg.

(2): The discriminant of X? — 1, using (1), is D = (—=1)E)pr(=1)p=1 = (—1)=D/2pr as (8) 4
p—1 and (p — 1)/2 have the same parity. But VD = [licj(@i —a;) € Q(¢) and so VD =
pP=H2\/(=1)=D/2p € Q(¢p) and so Q(v/(=1)®=D/2p) € Q((p)- 0



3.

(a) Let P(X) € Q[X] be irreducible with prime degree ¢ and exactly two nonreal roots. Show that
P has Galois group S,. [Hint: S, is generated by a transposition and a g-cycle.]

(b) Compute the Galois group of X7+ X +13 € Q[X]. [Hint: You are welcome to use Wolfram Alpha
for factorizations.|

Proof. (1): Let {on,...,aq} be the set of roots and let K = Q(a1,...,qq) be the splitting field.
Complex conjugation in C restricts to a nontrivial automorphism of K as it flips two of the roots. As
a permutation of the sets of roots of P complex conjugation is the transposition of the two nonreal
complex conjugate roots. The Galois group G had order divisible by g as [Q(a1) : Q] = ¢ | [K : Q).
Thus there exists an element g € G of order exactly ¢. As a permutation of the roots it has to be a
g-cycle. Finally, a transposition and a g-cycle generate S; and so G = 5.

(2): The polynomial P(X) = X7 + X + 13 is irreducible. Mod 2 it is irreducible so the Galois group
has a 7-cycle. The mod 59 factorization has one cubic and four linears so the Galois group has a
3-cycle. Thus the Galois group contains A7 which is generated by a 3-cycle and a 7-cycle. Finally, the
discriminant is not a square so the Galois group is Sy.

O

4. Let L/K/Q be finite extensions and denote by R and S the integral closure of Z in K and L respectively.

(a) Show that Try, g : L — K restricts to Trp/x : S — R.

(b) Show that ZD = {x € L| Try,x (xS) C R} is an S-submodle of L and that D = {2z € S|zZD C S}
is an ideal of S.

(¢) Suppose K = Q and so R = Z. Also suppose that L = Q(«) and S = Z[a] and let m(X) € Z[X]
be its minimal polynomial over Z, of degree d.
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iii. Show that
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iv. Deduce that m,, («) € D. (One can actually show that D is generated by m/ («).) [Hint: Use

(iii).]

Proof. (a): Suppose a € S, i.e., it is integral over Z. Thus the minimal polynomial of « over @Q is monic in

Z[X]. Any automorphism o € Gal(L/K) takes « to another root of its minimal polynomial and so o(«) is
again integral over Z. Finally, Try k() is a sum of elements of the form o(«) and thus is integral over Z.

At the same time it is in K and therefore it is in the integral closure R of Z in K.

(b): If Trp/x(xS) C R and Trp/kx(yS) € R and a € S then Trp /x((z + ay)S) = Trp /x(xS) +
Trp k(yaS) C Trp )k (2S) +Trp/k(yS) C R and so D is an S-submodule of L. Suppose now that x,y € D

and s € S. Then (x4 ay)ZD = 2ZD +yaID C 2ID+yID C S as a € S and ZD is an S-module. Therefore
D C S is an ideal.

(¢):
(i): Write mo(X) = X?+a4_1 X4+ 4+ ap € Z[X]. Then

1 X4

- X1+ xz[x !
ma (X) 1+ad_1X*1+...+a0de€ 1+ [ D




as 14+ag 1 X 1+ +apX ™% € Z[ X with inverse in 1 + X 1Z[X 1.
(ii): Write mqo(X) = [[(X — ;) in C, separable as the minimal polynomial is irreducible. Then

Me(X)
2 my, (i) (X — ;)

is a polynomial that is equal to 1 when evaluated at X € {aq,...,aq} (L'Hopital). But the degree of
this polynomial is d — 1 and therefore the polynomial is identically 1. Note that the image of «; via the
embeddings of Q(«) < L are the roots aq,...,aq. Therefore
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(iii): From (i) and (ii) comparing the coefficient of X " we deduce the result immediately.
(iv): Throughout Tr = Trg(a) - We need to show that if x € ZD then m,(a)r € S = Z[a]. Suppose
2 € ID which implies that Tr(zZ[«]) C Z. This is equivalent to Tr(za™) € Z for 0 <n < d — 1. Write

my,(a)z = ag + ara + -+ +ag10” 7" € Qo] = Q()
The condition Tr(za™) € Z is the same as Tr((>" a;a®)a™/ml, (a)) € Z which, using that Tr is linear, yields

d—1 i+n

«
g a; Tr(——=) €Z
i=0 ma (a)

Now show by induction that ag_1,...,ao € Z which is what we want. Taking n = 0 and using (iii) the above
trace is simply aq_1 € Z. Suppose ag_1,...,ax+1 € Z. Taken =d—1—k so
d—1
Z a; Tr(a™4=1F /m/! (@) = ap + Z a; Tr(a 410 /im/ (@) € Z
i i=k+1

again using (iii). But in the second sum every factor is in Z and so a; € Z yielding the inductive step.
O



