Graduate Algebra
 Homework 10

Due 2015-04-22

1. (a) Let p be a prime and $n \geq 1$. Show that there exists a subextension $\mathbb{Q}\left(\zeta_{p^{n+2}}\right) / K / \mathbb{Q}$ with $\operatorname{Gal}(K / \mathbb{Q}) \cong \mathbb{Z} / p^{n} \mathbb{Z}$.
(b) Let G be any finite abelian group. Show there exists a Galois extension K / \mathbb{Q} with $\operatorname{Gal}(K / \mathbb{Q}) \cong G$.

Proof. (1): Note that $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p^{n+2}}\right) / \mathbb{Q}\right) \cong\left(\mathbb{Z} / p^{n+2} \mathbb{Z}\right)^{\times}$which always has as a subquotient $\mathbb{Z} / p^{n} \mathbb{Z}$. Indeed, if $p>2$ then $\left(\mathbb{Z} / p^{n+2} \mathbb{Z}\right)^{\times} \cong \mathbb{Z} /(p-1) p^{n+1} \mathbb{Z} \cong \mathbb{Z} /(p-1) \mathbb{Z} \times \mathbb{Z} / p^{n+1} \mathbb{Z} \rightarrow \mathbb{Z} / p^{n+1} \mathbb{Z} \rightarrow \mathbb{Z} / p^{n} \mathbb{Z}$. If $p=2$ then $\left(\mathbb{Z} / 2^{n+2} \mathbb{Z}\right)^{\times} \cong \mathbb{Z} / 2 \times \mathbb{Z} / 2^{n} \mathbb{Z} \rightarrow \mathbb{Z} / 2^{n} \mathbb{Z}$.
Let G be the kernel of this surjection in which case $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p^{n+2}}\right)^{G} / \mathbb{Q}\right) \cong \mathbb{Z} / p^{n} \mathbb{Z}$ from Galois theory.
(2): If G is finite abelian write $G \cong \mathbb{Z} / p_{1}^{n_{1}} \mathbb{Z} \times \cdots \times \mathbb{Z} / p_{k}^{n_{k}} \mathbb{Z}$. Let $K_{i} \subset \mathbb{Q}\left(\zeta_{p_{i}^{n_{i}+2}}\right)$ be the subfield from above such that $\operatorname{Gal}\left(K_{i} / \mathbb{Q}\right) \cong \mathbb{Z} / p_{i}^{n_{1}} \mathbb{Z}$. Then $K_{i} \cap K_{j}=\mathbb{Q}$ because $\left[K_{i} \cap K_{j}: \mathbb{Q}\right] \mid\left(\left[K_{i}: \mathbb{Q}\right],\left[K_{j}: \mathbb{Q}\right]\right)=$ $\left(p_{i}^{n_{i}}, p_{j}^{n_{j}}\right)=1$. Then $K_{1} \cdots K_{k}$ is Galois over \mathbb{Q} with Galois $\operatorname{group} \operatorname{Gal}\left(\Pi K_{i} / \mathbb{Q}\right) \cong \Pi \operatorname{Gal}\left(K_{i} / \mathbb{Q}\right) \cong$ $\Pi \mathbb{Z} / p_{i}^{n_{1}} \mathbb{Z} \cong G$ as desired.
2. (a) Show that the discriminant of the polynomial $X^{n}+p X+q$ is

$$
(-1)^{\binom{n}{2}} n^{n} q^{n-1}+(-1)^{\binom{n-1}{2}}(n-1)^{n-1} p^{n}
$$

(b) If $p>2$ is a prime show that $\mathbb{Q}\left(\sqrt{(-1)^{(p-1) / 2} p}\right) \subset \mathbb{Q}\left(\zeta_{p}\right)$. [Hint: Compute the discriminant of $X^{p}-1$.]

Proof. (1): From class $D=(-1)^{\binom{n}{2}} \prod_{i} f^{\prime}\left(\alpha_{i}\right)$. But $f^{\prime}\left(\alpha_{i}\right)=n \alpha_{i}^{n-1}+p$ and $\alpha_{i}^{n-1}=-p-q \alpha_{i}^{-1}$ so $f^{\prime}\left(\alpha_{i}\right)=n\left(-p-q / \alpha_{i}\right)+p=(n-1) p / \alpha_{i}\left(-\alpha_{i}-q n /((n-1) p)\right)$.
Thus

$$
\begin{aligned}
D & =(-1)^{\binom{n}{2}} \prod f^{\prime}\left(\alpha_{i}\right) \\
& =(-1)^{\binom{n}{2}} \prod \frac{(n-1) p}{\alpha_{i}}\left(-\alpha_{i}-\frac{q n}{p(n-1)}\right) \\
& =(-1)^{\binom{n}{2}} \frac{((n-1) p)^{n}}{\prod \alpha_{i}} f\left(-\frac{q n}{p(n-1)}\right) \\
& =(-1)^{\binom{n}{2}} \frac{(n-1)^{n} p^{n}}{(-1)^{n} q}\left(\left(-\frac{q n}{p(n-1)}\right)^{n}+p\left(-\frac{q n}{p(n-1)}\right)+q\right) \\
& =(-1)^{\binom{n}{2}} n^{n} q^{n-1}+(-1)^{\binom{n-1}{2}(n-1)^{n-1} p^{n}}
\end{aligned}
$$

since $\prod \alpha_{i}=(-1)^{n} q$.
(2): The discriminant of $X^{p}-1$, using (1), is $D=(-1)^{\binom{p}{2}} p^{p}(-1)^{p-1}=(-1)^{(p-1) / 2} p^{p}$ as $\binom{p}{2}+$ $p-1$ and $(p-1) / 2$ have the same parity. But $\sqrt{D}=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right) \in \mathbb{Q}\left(\zeta_{p}\right)$ and so $\sqrt{D}=$ $p^{(p-1) / 2} \sqrt{(-1)^{(p-1) / 2} p} \in \mathbb{Q}\left(\zeta_{p}\right)$ and so $\mathbb{Q}\left(\sqrt{(-1)^{(p-1) / 2} p}\right) \subset \mathbb{Q}\left(\zeta_{p}\right)$.
3. (a) Let $P(X) \in \mathbb{Q}[X]$ be irreducible with prime degree q and exactly two nonreal roots. Show that P has Galois group S_{q}. [Hint: S_{q} is generated by a transposition and a q-cycle.]
(b) Compute the Galois group of $X^{7}+X+13 \in \mathbb{Q}[X]$. [Hint: You are welcome to use Wolfram Alpha for factorizations.]

Proof. (1): Let $\left\{\alpha_{1}, \ldots, \alpha_{q}\right\}$ be the set of roots and let $K=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{q}\right)$ be the splitting field. Complex conjugation in \mathbb{C} restricts to a nontrivial automorphism of K as it flips two of the roots. As a permutation of the sets of roots of P complex conjugation is the transposition of the two nonreal complex conjugate roots. The Galois group G had order divisible by q as $\left[\mathbb{Q}\left(\alpha_{1}\right): \mathbb{Q}\right]=q \mid[K: \mathbb{Q}]$. Thus there exists an element $g \in G$ of order exactly q. As a permutation of the roots it has to be a q-cycle. Finally, a transposition and a q-cycle generate S_{q} and so $G \cong S_{q}$.
(2): The polynomial $P(X)=X^{7}+X+13$ is irreducible. Mod 2 it is irreducible so the Galois group has a 7 -cycle. The mod 59 factorization has one cubic and four linears so the Galois group has a 3 -cycle. Thus the Galois group contains A_{7} which is generated by a 3 -cycle and a 7 -cycle. Finally, the discriminant is not a square so the Galois group is S_{7}.
4. Let $L / K / \mathbb{Q}$ be finite extensions and denote by R and S the integral closure of \mathbb{Z} in K and L respectively.
(a) Show that $\operatorname{Tr}_{L / K}: L \rightarrow K$ restricts to $\operatorname{Tr}_{L / K}: S \rightarrow R$.
(b) Show that $\mathcal{I D}=\left\{x \in L \mid \operatorname{Tr}_{L / K}(x S) \subset R\right\}$ is an S-submodle of L and that $\mathcal{D}=\{x \in S \mid x \mathcal{I D} \subset S\}$ is an ideal of S.
(c) Suppose $K=\mathbb{Q}$ and so $R=\mathbb{Z}$. Also suppose that $L=\mathbb{Q}(\alpha)$ and $S=\mathbb{Z}[\alpha]$ and let $m_{\alpha}(X) \in \mathbb{Z}[X]$ be its minimal polynomial over \mathbb{Z}, of degree d.
i. Show that $\frac{1}{m_{\alpha}(X)} \in X^{-d}\left(1+X^{-1} \mathbb{Z} \llbracket X^{-1} \rrbracket\right)$.
ii. Show that $\frac{1}{m_{\alpha}(X)}=\sum_{i=1}^{d} \frac{1}{m_{\alpha}^{\prime}\left(\alpha_{i}\right)\left(X-\alpha_{i}\right)}$ where $\alpha_{1}=\alpha, \alpha_{2}, \ldots, \alpha_{d}$ are the roots of $m_{\alpha}(X)$. Conclude that $\frac{1}{m_{\alpha}(X)}=\sum_{n \geq 1} X^{-n} \operatorname{Tr}_{\mathbb{Q}(\alpha) / \mathbb{Q}}\left(\frac{\alpha^{n-1}}{m_{\alpha}^{\prime}(\alpha)}\right)$.
iii. Show that

$$
\operatorname{Tr}_{\mathbb{Q}(\alpha) / \mathbb{Q}}\left(\frac{\alpha^{n}}{m_{\alpha}^{\prime}(\alpha)}\right)= \begin{cases}0 & 0 \leq n<d-1 \\ 1 & n=d-1 \\ \in \mathbb{Z} & n \geq d\end{cases}
$$

iv. Deduce that $m_{\alpha}^{\prime}(\alpha) \in \mathcal{D}$. (One can actually show that \mathcal{D} is generated by $m_{\alpha}^{\prime}(\alpha)$.) [Hint: Use (iii).]

Proof. (a): Suppose $\alpha \in S$, i.e., it is integral over \mathbb{Z}. Thus the minimal polynomial of α over \mathbb{Q} is monic in $\mathbb{Z}[X]$. Any automorphism $\sigma \in \operatorname{Gal}(L / K)$ takes α to another root of its minimal polynomial and so $\sigma(\alpha)$ is again integral over \mathbb{Z}. Finally, $\operatorname{Tr}_{L / K}(\alpha)$ is a sum of elements of the form $\sigma(\alpha)$ and thus is integral over \mathbb{Z}. At the same time it is in K and therefore it is in the integral closure R of \mathbb{Z} in K.
(b): If $\operatorname{Tr}_{L / K}(x S) \subset R$ and $\operatorname{Tr}_{L / K}(y S) \subset R$ and $a \in S$ then $\operatorname{Tr}_{L / K}((x+a y) S)=\operatorname{Tr}_{L / K}(x S)+$ $\operatorname{Tr}_{L / K}(y a S) \subset \operatorname{Tr}_{L / K}(x S)+\operatorname{Tr}_{L / K}(y S) \subset R$ and so $\mathcal{I D}$ is an S-submodule of L. Suppose now that $x, y \in \mathcal{D}$ and $s \in S$. Then $(x+a y) \mathcal{I D}=x \mathcal{I D}+y a \mathcal{I D} \subset x \mathcal{I D}+y \mathcal{I D} \subset S$ as $a \in S$ and $\mathcal{I D}$ is an S-module. Therefore $\mathcal{D} \subset S$ is an ideal.
(c):
(i): Write $m_{\alpha}(X)=X^{d}+a_{d-1} X^{d-1}+\cdots+a_{0} \in \mathbb{Z}[X]$. Then

$$
\frac{1}{m_{\alpha}(X)}=\frac{X^{-d}}{1+a_{d-1} X^{-1}+\cdots+a_{0} X^{-d}} \in X^{-d}\left(1+X^{-1} \mathbb{Z} \llbracket X^{-1} \rrbracket\right)
$$

as $1+a_{d-1} X^{-1}+\cdots+a_{0} X^{-d} \in \mathbb{Z} \llbracket X^{-1} \rrbracket \times$ with inverse in $1+X^{-1} \mathbb{Z} \llbracket X^{-1} \rrbracket$.
(ii): Write $m_{\alpha}(X)=\prod\left(X-\alpha_{i}\right)$ in \mathbb{C}, separable as the minimal polynomial is irreducible. Then

$$
\sum \frac{m_{\alpha}(X)}{m_{\alpha}^{\prime}\left(\alpha_{i}\right)\left(X-\alpha_{i}\right)}
$$

is a polynomial that is equal to 1 when evaluated at $X \in\left\{\alpha_{1}, \ldots, \alpha_{d}\right\}$ (L'Hôpital). But the degree of this polynomial is $d-1$ and therefore the polynomial is identically 1 . Note that the image of α_{1} via the embeddings of $\mathbb{Q}(\alpha) \hookrightarrow L$ are the roots $\alpha_{1}, \ldots, \alpha_{d}$. Therefore

$$
\begin{aligned}
\frac{1}{m_{\alpha}(X)} & =\sum_{i} \frac{1}{m_{\alpha}^{\prime}\left(\alpha_{i}\right) X\left(1-\alpha_{i} X^{-1}\right)} \\
& =\sum_{i} \sum_{n \geq 0} \frac{\left(\alpha_{i} X^{-1}\right)^{n}}{m_{\alpha}^{\prime}\left(\alpha_{i}\right) X} \\
& =\sum_{n \geq 1} X^{-n} \sum_{i} \frac{\alpha_{i}^{n-1}}{m_{\alpha}^{\prime}\left(\alpha_{i}\right)} \\
& =\sum_{n \geq 1} X^{-n} \operatorname{Tr}_{\mathbb{Q}(\alpha) / \mathbb{Q}}\left(\frac{\alpha^{n-1}}{m_{\alpha}^{\prime}(\alpha)}\right)
\end{aligned}
$$

(iii): From (i) and (ii) comparing the coefficient of X^{-n} we deduce the result immediately.
(iv): Throughout $\operatorname{Tr}=\operatorname{Tr}_{\mathbb{Q}(\alpha) / \mathbb{Q}}$. We need to show that if $x \in \mathcal{I D}$ then $m_{\alpha}^{\prime}(\alpha) x \in S=\mathbb{Z}[\alpha]$. Suppose $x \in \mathcal{I D}$ which implies that $\operatorname{Tr}(x \mathbb{Z}[\alpha]) \subset \mathbb{Z}$. This is equivalent to $\operatorname{Tr}\left(x \alpha^{n}\right) \in \mathbb{Z}$ for $0 \leq n \leq d-1$. Write

$$
m_{\alpha}^{\prime}(\alpha) x=a_{0}+a_{1} \alpha+\cdots+a_{d-1} \alpha^{d-1} \in \mathbb{Q}[\alpha]=\mathbb{Q}(\alpha)
$$

The condition $\operatorname{Tr}\left(x \alpha^{n}\right) \in \mathbb{Z}$ is the same as $\operatorname{Tr}\left(\left(\sum a_{i} \alpha^{i}\right) \alpha^{n} / m_{\alpha}^{\prime}(\alpha)\right) \in \mathbb{Z}$ which, using that Tr is linear, yields

$$
\sum_{i=0}^{d-1} a_{i} \operatorname{Tr}\left(\frac{\alpha^{i+n}}{m_{\alpha}^{\prime}(\alpha)}\right) \in \mathbb{Z}
$$

Now show by induction that $a_{d-1}, \ldots, a_{0} \in \mathbb{Z}$ which is what we want. Taking $n=0$ and using (iii) the above trace is simply $a_{d-1} \in \mathbb{Z}$. Suppose $a_{d-1}, \ldots, a_{k+1} \in \mathbb{Z}$. Take $n=d-1-k$ so

$$
\sum_{i} a_{i} \operatorname{Tr}\left(\alpha^{i+d-1-k} / m_{\alpha}^{\prime}(\alpha)\right)=a_{k}+\sum_{i=k+1}^{d-1} a_{i} \operatorname{Tr}\left(\alpha^{i+d-1-k} / m_{\alpha}^{\prime}(\alpha)\right) \in \mathbb{Z}
$$

again using (iii). But in the second sum every factor is in \mathbb{Z} and so $a_{k} \in \mathbb{Z}$ yielding the inductive step.

