
Graduate Algebra

Homework 10

Due 2015-04-22

1. (a) Let p be a prime and n ≥ 1. Show that there exists a subextension Q(ζpn+2)/K/Q with
Gal(K/Q) ∼= Z/pnZ.

(b) Let G be any finite abelian group. Show there exists a Galois extension K/Q with Gal(K/Q) ∼= G.

Proof. (1): Note that Gal(Q(ζpn+2)/Q) ∼= (Z/pn+2Z)× which always has as a subquotient Z/pnZ.
Indeed, if p > 2 then (Z/pn+2Z)× ∼= Z/(p− 1)pn+1Z ∼= Z/(p− 1)Z× Z/pn+1Z→ Z/pn+1Z→ Z/pnZ.
If p = 2 then (Z/2n+2Z)× ∼= Z/2× Z/2nZ→ Z/2nZ.

Let G be the kernel of this surjection in which case Gal(Q(ζpn+2)G/Q) ∼= Z/pnZ from Galois theory.

(2): If G is finite abelian write G ∼= Z/pn1
1 Z× · · · × Z/pnk

k Z. Let Ki ⊂ Q(ζ
p
ni+2

i
) be the subfield from

above such that Gal(Ki/Q) ∼= Z/pn1
i Z. Then Ki∩Kj = Q because [Ki∩Kj : Q] | ([Ki : Q], [Kj : Q]) =

(pni
i , p

nj

j ) = 1. Then K1 · · ·Kk is Galois over Q with Galois group Gal(
∏
Ki/Q) ∼=

∏
Gal(Ki/Q) ∼=∏

Z/pn1
i Z ∼= G as desired.

2. (a) Show that the discriminant of the polynomial Xn + pX + q is

(−1)(
n
2)nnqn−1 + (−1)(

n−1
2 )(n− 1)n−1pn

(b) If p > 2 is a prime show that Q(
√

(−1)(p−1)/2p) ⊂ Q(ζp). [Hint: Compute the discriminant of
Xp − 1.]

Proof. (1): From class D = (−1)(
n
2)
∏
i f
′(αi). But f ′(αi) = nαn−1i + p and αn−1i = −p − qα−1i so

f ′(αi) = n(−p− q/αi) + p = (n− 1)p/αi(−αi − qn/((n− 1)p)).

Thus

D = (−1)(
n
2)
∏

f ′(αi)

= (−1)(
n
2)
∏ (n− 1)p

αi

(
−αi −

qn

p(n− 1)

)
= (−1)(

n
2) ((n− 1)p)n∏

αi
f

(
− qn

p(n− 1)

)
= (−1)(

n
2) (n− 1)npn

(−1)nq

((
− qn

p(n− 1)

)n
+ p

(
− qn

p(n− 1)

)
+ q

)
= (−1)(

n
2)nnqn−1 + (−1)(

n−1
2 )(n− 1)n−1pn

since
∏
αi = (−1)nq.

(2): The discriminant of Xp − 1, using (1), is D = (−1)(
p
2)pp(−1)p−1 = (−1)(p−1)/2pp as

(
p
2

)
+

p − 1 and (p − 1)/2 have the same parity. But
√
D =

∏
i<j(αi − αj) ∈ Q(ζp) and so

√
D =

p(p−1)/2
√

(−1)(p−1)/2p ∈ Q(ζp) and so Q(
√

(−1)(p−1)/2p) ⊂ Q(ζp).
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3. (a) Let P (X) ∈ Q[X] be irreducible with prime degree q and exactly two nonreal roots. Show that
P has Galois group Sq. [Hint: Sq is generated by a transposition and a q-cycle.]

(b) Compute the Galois group of X7 +X+13 ∈ Q[X]. [Hint: You are welcome to use Wolfram Alpha
for factorizations.]

Proof. (1): Let {α1, . . . , αq} be the set of roots and let K = Q(α1, . . . , αq) be the splitting field.
Complex conjugation in C restricts to a nontrivial automorphism of K as it flips two of the roots. As
a permutation of the sets of roots of P complex conjugation is the transposition of the two nonreal
complex conjugate roots. The Galois group G had order divisible by q as [Q(α1) : Q] = q | [K : Q].
Thus there exists an element g ∈ G of order exactly q. As a permutation of the roots it has to be a
q-cycle. Finally, a transposition and a q-cycle generate Sq and so G ∼= Sq.

(2): The polynomial P (X) = X7 + X + 13 is irreducible. Mod 2 it is irreducible so the Galois group
has a 7-cycle. The mod 59 factorization has one cubic and four linears so the Galois group has a
3-cycle. Thus the Galois group contains A7 which is generated by a 3-cycle and a 7-cycle. Finally, the
discriminant is not a square so the Galois group is S7.

4. Let L/K/Q be finite extensions and denote by R and S the integral closure of Z in K and L respectively.

(a) Show that TrL/K : L→ K restricts to TrL/K : S → R.

(b) Show that ID = {x ∈ L|TrL/K(xS) ⊂ R} is an S-submodle of L and that D = {x ∈ S|xID ⊂ S}
is an ideal of S.

(c) Suppose K = Q and so R = Z. Also suppose that L = Q(α) and S = Z[α] and let mα(X) ∈ Z[X]
be its minimal polynomial over Z, of degree d.

i. Show that
1

mα(X)
∈ X−d(1 +X−1Z[[X−1]]).

ii. Show that
1

mα(X)
=
∑d
i=1

1

m′α(αi)(X − αi)
where α1 = α, α2, . . . , αd are the roots ofmα(X).

Conclude that
1

mα(X)
=
∑
n≥1X

−n TrQ(α)/Q

(
αn−1

m′α(α)

)
.

iii. Show that

TrQ(α)/Q

(
αn

m′α(α)

)
=


0 0 ≤ n < d− 1

1 n = d− 1

∈ Z n ≥ d

iv. Deduce that m′α(α) ∈ D. (One can actually show that D is generated by m′α(α).) [Hint: Use
(iii).]

Proof. (a): Suppose α ∈ S, i.e., it is integral over Z. Thus the minimal polynomial of α over Q is monic in
Z[X]. Any automorphism σ ∈ Gal(L/K) takes α to another root of its minimal polynomial and so σ(α) is
again integral over Z. Finally, TrL/K(α) is a sum of elements of the form σ(α) and thus is integral over Z.
At the same time it is in K and therefore it is in the integral closure R of Z in K.

(b): If TrL/K(xS) ⊂ R and TrL/K(yS) ⊂ R and a ∈ S then TrL/K((x + ay)S) = TrL/K(xS) +
TrL/K(yaS) ⊂ TrL/K(xS) + TrL/K(yS) ⊂ R and so ID is an S-submodule of L. Suppose now that x, y ∈ D
and s ∈ S. Then (x+ay)ID = xID+ yaID ⊂ xID+ yID ⊂ S as a ∈ S and ID is an S-module. Therefore
D ⊂ S is an ideal.

(c):
(i): Write mα(X) = Xd + ad−1X

d−1 + · · ·+ a0 ∈ Z[X]. Then

1

mα(X)
=

X−d

1 + ad−1X−1 + · · ·+ a0X−d
∈ X−d(1 +X−1Z[[X−1]])
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as 1 + ad−1X
−1 + · · ·+ a0X

−d ∈ Z[[X−1]]× with inverse in 1 +X−1Z[[X−1]].
(ii): Write mα(X) =

∏
(X − αi) in C, separable as the minimal polynomial is irreducible. Then∑ mα(X)

m′α(αi)(X − αi)

is a polynomial that is equal to 1 when evaluated at X ∈ {α1, . . . , αd} (L’Hôpital). But the degree of
this polynomial is d − 1 and therefore the polynomial is identically 1. Note that the image of α1 via the
embeddings of Q(α) ↪→ L are the roots α1, . . . , αd. Therefore

1

mα(X)
=
∑
i

1

m′α(αi)X(1− αiX−1)

=
∑
i

∑
n≥0

(αiX
−1)n

m′α(αi)X

=
∑
n≥1

X−n
∑
i

αn−1i

m′α(αi)

=
∑
n≥1

X−n TrQ(α)/Q

(
αn−1

m′α(α)

)

(iii): From (i) and (ii) comparing the coefficient of X−n we deduce the result immediately.
(iv): Throughout Tr = TrQ(α)/Q. We need to show that if x ∈ ID then m′α(α)x ∈ S = Z[α]. Suppose

x ∈ ID which implies that Tr(xZ[α]) ⊂ Z. This is equivalent to Tr(xαn) ∈ Z for 0 ≤ n ≤ d− 1. Write

m′α(α)x = a0 + a1α+ · · ·+ ad−1α
d−1 ∈ Q[α] = Q(α)

The condition Tr(xαn) ∈ Z is the same as Tr((
∑
aiα

i)αn/m′α(α)) ∈ Z which, using that Tr is linear, yields

d−1∑
i=0

ai Tr(
αi+n

m′α(α)
) ∈ Z

Now show by induction that ad−1, . . . , a0 ∈ Z which is what we want. Taking n = 0 and using (iii) the above
trace is simply ad−1 ∈ Z. Suppose ad−1, . . . , ak+1 ∈ Z. Take n = d− 1− k so

∑
i

ai Tr(αi+d−1−k/m′α(α)) = ak +

d−1∑
i=k+1

ai Tr(αi+d−1−k/m′α(α)) ∈ Z

again using (iii). But in the second sum every factor is in Z and so ak ∈ Z yielding the inductive step.
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