Graduate Algebra
 Homework 11

Due 2015-04-29

1. Let $\mathbb{C}\left(x^{1 / \infty}, y^{1 / \infty}\right)=\cup_{m, n \geq 1} \mathbb{C}\left(x^{1 / m}, y^{1 / n}\right)$.
(a) Show that $\mathbb{C}\left(x^{1 / \infty}, y^{1 / \infty}\right)$ is Galois over $\mathbb{C}(x, y)$.
(b) Compute $\operatorname{Gal}\left(\mathbb{C}\left(x^{1 / \infty}, y^{1 / \infty}\right) / \mathbb{C}(x, y)\right)$.

Proof. (a): It suffices to show that $\mathbb{C}\left(x^{1 / m}, y^{1 / n}\right)$ is Galois over $\mathbb{C}(x, y)$. But it is the splitting field of ($\left.T^{m}-x\right)\left(T^{n}-y\right)$ and so is normal. Separability follows from characteristic 0 .
(b): $\sigma \in \operatorname{Gal}\left(\mathbb{C}\left(x^{1 / \infty}, y^{1 / \infty}\right) / \mathbb{C}(x, y)\right)$ takes $x^{1 / m}$ to $\zeta_{m}^{a} x^{1 / m}$ and $y^{1 / n}$ to $\zeta_{n}^{b} y^{1 / n}$ and we see that $\operatorname{Gal}\left(\mathbb{C}\left(x^{1 / m}, y^{1 / n}\right) / \mathbb{C}(x, y)\right) \cong \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$. Moreover, $\mathbb{C}\left(x^{1 / m}, y^{1 / n}\right) \subset \mathbb{C}\left(x^{1 / M}, y^{1 / N}\right)$ iff $m \mid M$ and $n \mid N$ and then the natural projection $\operatorname{Gal}\left(\mathbb{C}\left(x^{1 / M}, y^{1 / N}\right), \mathbb{C}(x, y)\right) \rightarrow \operatorname{Gal}\left(\mathbb{C}\left(x^{1 / m}, y^{1 / n}\right) / \mathbb{C}(x, y)\right)$ is the natural projection map $\mathbb{Z} / M \mathbb{Z} \times \mathbb{Z} / N \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$.
Finally,

$$
\operatorname{Gal}\left(\mathbb{C}\left(x^{1 / \infty}, y^{1 / \infty}\right) / \mathbb{C}(x, y)\right) \cong \lim _{\leftarrow} \operatorname{Gal}\left(\mathbb{C}\left(x^{1 / m}, y^{1 / n}\right) / \mathbb{C}(x, y)\right) \cong \lim _{\leftrightarrows} \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z} \cong \widehat{\mathbb{Z}} \times \widehat{\mathbb{Z}}
$$

as the projection maps in the definition of $\widehat{\mathbb{Z}}$ are precisely the natural residue projection maps.
2. Let L / K be a Galois extension and let $\left\{M_{k} \mid k \in I\right\}$ be a collection of subextensions $L / M_{k} / K$ such that

Proof. Consider the natural projection map
simply by taking the tuple $\left(\sigma_{M}\right)$ to the tuple $\left(\sigma_{M_{k}}\right)$. This is clearly a homomorphism $\operatorname{Gal}(L / K) \cong$ $\lim _{\operatorname{Gal}(M / K)}^{\operatorname{Gim}} \operatorname{Gal}\left(M_{k} / K\right)$. If $\Phi(\sigma)=1$ and $\alpha \in L$ let k be such that $\alpha \in M_{k}$. Then $\Phi(\sigma)(\alpha)=\left.\sigma\right|_{M_{k}}(\alpha)=\alpha$ and so $\sigma(\alpha)=\alpha$. We deduce that $\sigma=1$ and so Φ is injective.
For surjectivity suppose $\left(\sigma_{k}\right) \in \varliminf_{\lfloor } \operatorname{Gal}\left(M_{k} / K\right)$. Let M / K be any finite Galois extension. Then $M=K\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ and there exists k large enough such that M_{k} contains $\alpha_{1}, \ldots, \alpha_{m}$. Thus $M \subset M_{k}$ and define $\sigma_{M}=\left.\sigma_{k}\right|_{M}$. This yields $\left(\sigma_{M}\right) \in \underset{\rightleftarrows}{\lim } \operatorname{Gal}(M / K)$ and clearly $\Phi\left(\left(\sigma_{M}\right)\right)=\left(\sigma_{k}\right)$.
3. Suppose $L_{1}, L_{2} / K$ are two (possibly infinite) Galois extensions. Show that $L_{1} L_{2} / K$ and $L_{1} \cap L_{2} / K$ are Galois and

$$
\operatorname{Gal}\left(L_{1} L_{2} / K\right) \cong\left\{(\sigma, \tau) \in \operatorname{Gal}\left(L_{1} / K\right) \times \operatorname{Gal}\left(L_{2} / K\right)|\sigma|_{L_{1} \cap L_{2}}=\left.\tau\right|_{L_{1} \cap L_{2}}\right\}
$$

[Hint: Use the previous problem.]

Proof. That $L_{1} \cap L_{2} / K$ is Galois follows as in the finite case, the proof of which did not use finiteness. Every element $x \in L_{1} L_{2}$ is a finite rational expression in elements $\alpha_{1}, \ldots, \alpha_{p} \in L_{1}$ and $\beta_{1}, \ldots, \beta_{q} \in L_{2}$. Thus $x \in K\left(\alpha_{1}, \ldots, \alpha_{p}, \beta_{1}, \ldots, \beta_{q}\right)$ and so x is separable over K. We deduce that $L_{1} L_{2} / K$ is separable. Finally, suppose $P(X) \in K[X]$ be irreducible with a root $x \in L_{1} L_{2}$. As before this implies that $P(X)$ has a root $x \in K\left(\alpha_{1}, \ldots, \alpha_{p}\right) K\left(\beta_{1}, \ldots, \beta_{q}\right)$. Let M / K be the splitting field of the product of the minimal polynomials of $\alpha_{1}, \ldots, \alpha_{p}$ and N / K be the splitting field of the product of the minimal polynomials of $\beta_{1}, \ldots, \beta_{q}$. This shows that M / K and N / K are normal and since L_{1} / K and L_{2} / K are normal we deduce that $M \subset L_{1}$ and $N \subset L_{2}$. But then $M N / K$ is normal and $M N$ contains x and $M N \subset L_{1} L_{2}$. Since $M N / K$ is normal every root of P is then in $M N$ and therefore in $L_{1} L_{2}$. We deduce that $L_{1} L_{2} / K$ is normal and therefore Galois.
Consider the collection $\left\{M_{i}\right\}$ of all subextensions of L_{1} / K which are finite Galois over K and $\left\{N_{j}\right\}$ of all subextensions of L_{2} / K which are finite Galois over K. Then $\left\{M_{i} N_{j}\right\}$ is some collection of subextensions of $L_{1} L_{2} / K$ which are finite Galois over K and certainly $L_{1} L_{2}=\bigcup M_{i} N_{j}$. Using the previous problem

$$
\begin{aligned}
\operatorname{Gal}\left(L_{1} L_{2} / K\right) & \cong \lim _{\leftrightarrows} \operatorname{Gal}\left(M_{i} N_{j} / K\right) \\
& \cong \lim _{\leftrightarrows}\left\{(\sigma, \tau) \in \operatorname{Gal}\left(M_{i} / K\right) \times \operatorname{Gal}\left(N_{j} / K\right)|\sigma|_{M_{i} \cap N_{j}}=\left.\tau\right|_{M_{i} \cap N_{j}}\right\} \\
& \subset \lim _{\leftrightarrows} \operatorname{Gal}\left(M_{i} / K\right) \times \operatorname{Gal}\left(N_{j} / K\right) \\
& \cong \operatorname{Gal}\left(L_{1} / K\right) \times \operatorname{Gal}\left(L_{2} / K\right)
\end{aligned}
$$

But $(\sigma, \tau) \in \operatorname{Gal}\left(L_{1} / K\right) \times \operatorname{Gal}\left(L_{2} / K\right)$ is in

$$
\lim _{\leftrightarrows}\left\{(\sigma, \tau) \in \operatorname{Gal}\left(M_{i} / K\right) \times \operatorname{Gal}\left(N_{j} / K\right)|\sigma|_{M_{i} \cap N_{j}}=\left.\tau\right|_{M_{i} \cap N_{j}}\right\}
$$

if and only if for each M_{i} and N_{j} one has

$$
\left.\sigma\right|_{M_{i} \cap N_{j}}=\left.\tau\right|_{M_{i} \cap N_{j}}
$$

But $L_{1} \cap L_{2}=\bigcup M_{i} \cap N_{j}$ so this condition is equivalent to $\left.\sigma\right|_{L_{1} \cap L_{2}}=\left.\tau\right|_{L_{1} \cap L_{2}}$ and the conclusion follows.
4. Show that $H^{n}\left(\operatorname{Gal}\left(\mathbb{F}_{q^{d}} / \mathbb{F}_{q}\right), \mathbb{F}_{q^{d}}^{\times}\right)=0$ if $n \geq 1$.

Proof. Let $\phi(x)=x^{q}$ be the generator of $\operatorname{Gal}\left(\mathbb{F}_{q^{d}} / \mathbb{F}_{q}\right)$. Write $N=1+\phi+\cdots+\phi^{d-1}$ act multiplicatively on $\mathbb{F}_{q^{d}}^{\times}$by $N(x)=x \phi(x) \phi^{2}(x) \cdots \phi^{d-1}(x)=x^{1+q+\cdots+q^{d-1}}$. Then from class if $n \geq 1$ then

$$
H^{n}\left(\operatorname{Gal}\left(\mathbb{F}_{q^{d}} / \mathbb{F}_{q}\right), \mathbb{F}_{q^{d}}^{\times}\right) \cong \begin{cases}\left(\mathbb{F}_{q^{d}}^{\times}\right)^{N=1} / \operatorname{Im}(\phi-1) & n \text { odd } \\ \left(\mathbb{F}_{q^{d}}^{\times}\right)^{\phi=\mathrm{id}} / \operatorname{Im} N & n \text { even }\end{cases}
$$

But $\left(\mathbb{F}_{q^{d}}^{\times}\right)^{\phi=\mathrm{id}}=\left(\mathbb{F}_{q^{d}}^{\times}\right)^{\operatorname{Gal}\left(\mathbb{F}_{q^{d}} / \mathbb{F}_{q}\right)}=\mathbb{F}_{q}^{\times}$from the main theorem of Galois theory. Also, $\operatorname{Im} N=$ $\left\{x^{1+q+\cdots+q^{d-1}} \mid x \in \mathbb{F}_{q^{d}}^{\times}\right\}$. Let g be a generator of the cyclic group $\mathbb{F}_{q^{d}}^{\times}$. Then $\operatorname{Im} N=\left\langle g^{1+q+\cdots+q^{d-1}}\right\rangle$. Since $\operatorname{ord}\left(g^{1+q+\cdots+q^{d-1}}\right)=\left(q^{d}-1\right) /\left(1+q+\cdots+q^{d-1}\right)=q-1$ it follows that $\left\langle g^{1+q+\cdots+q^{d-1}}\right\rangle \cong \mathbb{F}_{q}^{\times}$ and thus $\operatorname{Im} N=\mathbb{F}_{q}^{\times}$. Immediately we deduce that $H^{n}=0$ when n is even.
Also if $N(x)=1$ then $x^{1+q+\cdots+q^{d-1}}=1$ and so $x \in\left\langle g^{q-1}\right\rangle$. Note that $(\phi-1)(x)=x^{q-1}$ whose image is clearly $\left\langle g^{q-1}\right\rangle$. We deduce that $H^{n}=0$ when n is odd as well.
5. Let $H \subset G$ be finite groups and N an H-module.
(a) Let $\operatorname{Ind}_{H}^{G} N=\{f: G \rightarrow N \mid f(h g)=h(f(g)), \forall g \in G, h \in H\}$. For $g \in G$ and $f \in \operatorname{Ind}_{H}^{G} N$ define $g(f): G \rightarrow N$ by $g(f)(x)=f(x g)$. Show that this yields an action on $\operatorname{Ind}_{H}^{G} N$ which turns $\operatorname{Ind}_{H}^{G} N$ into a G-module.
(b) Thinking of N as a $\mathbb{Z}[H]$-module and $\operatorname{Ind}_{H}^{G} N$ as a $\mathbb{Z}[G]$-module show that $\operatorname{Ind}_{H}^{G} N \cong \mathbb{Z}[G] \otimes_{\mathbb{Z}[H]} N$ as $\mathbb{Z}[G]$-modules. Here $\mathbb{Z}[G] \otimes_{\mathbb{Z}[H]} N$ is a $\mathbb{Z}[G]$-module via the scalar multiplication $[g]([h] \otimes n)=$ $[g h] \otimes n$. [Hint: Show that the map $f \mapsto \sum_{g \in H \backslash G}\left[g^{-1}\right] \otimes f(g)$ is well-defined and yields the isomorphism.]
(c) If M is a G-module show that $\operatorname{Hom}_{\mathbb{Z}[G]}\left(M, \operatorname{Ind}_{H}^{G} N\right) \cong \operatorname{Hom}_{\mathbb{Z}[H]}(M, N)$. [Hint: Take $f: M \rightarrow$ $\operatorname{Ind}_{H}^{G} N$ to $m \mapsto f(m)(1)$ and $\phi: M \rightarrow N$ to $m \mapsto(g \mapsto \phi(g(m)))$.]

Proof. (a): We need to check that $g(h(f))=(g h)(f)$. But $g(h(f))(x)=g(f)(x h)=f(x g h)=(g h)(f)(x)$. The action clearly commutes with the natural abelian group structure on the space of functions in $\operatorname{Ind}_{H}^{G} N$.
(b): For $f \in \operatorname{Ind}_{H}^{G} N$ let $\Phi(f)=\sum_{g \in H \backslash G}\left[g^{-1}\right] \otimes f(g)$. To show that $\Phi(f)$ is well-defined we need only show that it is independent of choices of representatives of $H \backslash G$ in G. But if $g^{\prime}=h g$ are representatives for the same coset in $H \backslash G$ then $\left[\left(g^{\prime}\right)^{-1}\right] \otimes f\left(g^{\prime}\right)=\left[g^{-1} h^{-1}\right] \otimes f(h g)=\left[g^{-1}\right]\left[h^{-1}\right] \otimes h(f(g))=\left[g^{-1}\right] \otimes f(g)$ as $\left[h^{-1}\right] \in \mathbb{Z}[H]$. Finally, Φ is additive trivially and so Φ is a homomorphism $\operatorname{Ind}_{H}^{G} N \rightarrow \mathbb{Z}[G] \otimes_{\mathbb{Z}[H]} N$.

Next, every element of $\mathbb{Z}[G] \otimes_{\mathbb{Z}[H]} N$ is of the form $\sum_{g \in G}\left[g^{-1}\right] \otimes n_{g}$ as $\mathbb{Z}[G]$ is free over \mathbb{Z}. Fix once and for all representatives in G of the cosets $H \backslash G$. Rewrite this as

$$
\sum_{g \in G}\left[g^{-1}\right] \otimes n_{g}=\sum_{g \in H \backslash G} \sum_{h \in H}\left[(h g)^{-1}\right] \otimes n_{h g}=\sum_{g \in H \backslash G}\left[g^{-1}\right] \otimes\left(\sum_{h \in H} h\left(n_{g}\right)\right)=\sum_{g \in H \backslash G}\left[g^{-1}\right] \otimes f_{g}
$$

Note that $\mathbb{Z}[G] \cong \oplus_{g \in H \backslash G} g^{-1} \mathbb{Z}[H]$ is a free $\mathbb{Z}[H]$-module. Thus $\mathbb{Z}[G] \otimes_{\mathbb{Z}[H]} N \cong \oplus_{g \in H \backslash G} g^{-1} \mathbb{Z}[H] \otimes_{\mathbb{Z}[H]} N$ and so the expression $\sum_{g \in H \backslash G}\left[g^{-1}\right] \otimes f_{g}$ uniquely determines the f_{g}.

Since the f_{g} are uniquely determined we may define $f: G \rightarrow N$ by $f(g)=f_{g}$. Again this is a homomorphism of abelian groups and clearly it is the inverse of Φ. Thus $\Phi: \operatorname{Ind}_{H}^{G} N \rightarrow \mathbb{Z}[G] \otimes_{\mathbb{Z}[H]} N$ is an isomorphism of \mathbb{Z}-modules. To check that it is an isomorphism of $\mathbb{Z}[G]$-modules it suffices to show that for $h \in G, \Phi(h f)=h \Phi(f)$.

$$
\Phi(h f)=\sum_{g \in H \backslash G}\left[g^{-1}\right] \otimes(h f)(g)=\sum_{g \in H \backslash G}\left[g^{-1}\right] \otimes f(g h)=\sum_{g^{\prime}=g h \in H \backslash G}\left[h\left(g^{\prime}\right)^{-1}\right] \otimes f\left(g^{\prime}\right)=h \Phi(f)
$$

as multiplication by h permutes $H \backslash G$.
(c): Suppose $f: M \rightarrow \operatorname{Ind}_{H}^{G} N$ is $\mathbb{Z}[G]$-linear. Let $\Phi(f)=(m \mapsto f(m)(1))$. This is a map $M \rightarrow N$ that is clearly \mathbb{Z}-linear. Suppose $h \in H$. We need to check that it is h-linear, i.e., that $\Phi(f)(h(m))=h(\Phi(f)(m))$. But f is h-linear so

$$
\Phi(f)(h(m))=f(h(m))(1)=h(f(m))(1)=f(m)(h)=h(f(m)(1))
$$

as $h \in H$ and $f(m) \in \operatorname{Ind}_{H}^{G} N$. Thus we get a $\operatorname{map} \Psi: \operatorname{Hom}_{\mathbb{Z}[G]}\left(M, \operatorname{Ind}_{H}^{G} N\right) \rightarrow \operatorname{Hom}_{\mathbb{Z}[H]}(M, N)$. From definitions it is linear in f and thus Φ is a homomorphism.

Now suppose $\phi: M \rightarrow N$ is H-linear and define $\Psi(\phi)=(m \mapsto(g \mapsto \phi(g(m))))$. Note that for $h \in H, g \in G$

$$
\Psi(\phi)(m)(h g)=\phi(h g(m))=h(\phi(g(m)))=h(\Psi(\phi(m)(g)))
$$

as ϕ is h-linear. Thus $\Psi(\phi)(m) \in \operatorname{Ind}_{H}^{G} N$. The map $\Psi(\phi)$ is linear in m and thus we get a \mathbb{Z}-linear homomorphism $\Psi(\phi): M \rightarrow \operatorname{Ind}_{H}^{G} N$. We need to heck that $\Psi(\phi)$ is G-linear. Suppose $h \in G$.

$$
\Psi(\phi)(h(m))(g)=\phi(g(h(m)))=\phi((g h)(m))=\Psi(\phi)(m)(g h)=h(\Psi(\phi)(m))(g)
$$

Finally, note that Ψ is linear in ϕ and so $\Psi: \operatorname{Hom}_{\mathbb{Z}[H]}(M, N) \rightarrow \operatorname{Hom}_{\mathbb{Z}[G]}\left(M, \operatorname{Ind}_{H}^{G} N\right)$ is a homomorphism.
Note that $\Psi(\Phi(f))(m)(g)=\Phi(f)(g(m))=f(g(m))(1)=g(f(m))(1)=f(m)(g)$ and $\Phi(\Psi(\phi))(m)=$ $\Psi(\phi)(m)(1)=\phi(m)$ and so Φ and Ψ are mutual inverses yielding an isomorphism.

