
Graduate Algebra

Homework 11

Due 2015-04-29

1. Let C(x1/∞, y1/∞) = ∪m,n≥1C(x1/m, y1/n).

(a) Show that C(x1/∞, y1/∞) is Galois over C(x, y).

(b) Compute Gal(C(x1/∞, y1/∞)/C(x, y)).

Proof. (a): It suffices to show that C(x1/m, y1/n) is Galois over C(x, y). But it is the splitting field of
(Tm − x)(Tn − y) and so is normal. Separability follows from characteristic 0.

(b): σ ∈ Gal(C(x1/∞, y1/∞)/C(x, y)) takes x1/m to ζamx
1/m and y1/n to ζbny

1/n and we see that
Gal(C(x1/m, y1/n)/C(x, y)) ∼= Z/mZ×Z/nZ. Moreover, C(x1/m, y1/n) ⊂ C(x1/M , y1/N ) iff m |M and
n | N and then the natural projection Gal(C(x1/M , y1/N ),C(x, y)) → Gal(C(x1/m, y1/n)/C(x, y)) is
the natural projection map Z/MZ× Z/NZ→ Z/mZ× Z/nZ.

Finally,

Gal(C(x1/∞, y1/∞)/C(x, y)) ∼= lim←−Gal(C(x1/m, y1/n)/C(x, y)) ∼= lim←−Z/mZ× Z/nZ ∼= Ẑ× Ẑ

as the projection maps in the definition of Ẑ are precisely the natural residue projection maps.

2. Let L/K be a Galois extension and let {Mk|k ∈ I} be a collection of subextensions L/Mk/K such that
Mk/K is finite Galois and L =

⋃
Mk. Show that Gal(L/K) ∼= lim←−Gal(Mk/K).

Proof. Consider the natural projection map

Φ : lim←−
L/ M/K︸ ︷︷ ︸

finite Galois

Gal(M/K)→ lim←−Gal(Mk/K)

simply by taking the tuple (σM ) to the tuple (σMk
). This is clearly a homomorphism Gal(L/K) ∼=

lim←−Gal(M/K) → lim←−Gal(Mk/K). If Φ(σ) = 1 and α ∈ L let k be such that α ∈ Mk. Then
Φ(σ)(α) = σ|Mk

(α) = α and so σ(α) = α. We deduce that σ = 1 and so Φ is injective.

For surjectivity suppose (σk) ∈ lim←−Gal(Mk/K). Let M/K be any finite Galois extension. Then
M = K(α1, . . . , αm) and there exists k large enough such that Mk contains α1, . . . , αm. Thus M ⊂Mk

and define σM = σk|M . This yields (σM ) ∈ lim←−Gal(M/K) and clearly Φ((σM )) = (σk).

3. Suppose L1, L2/K are two (possibly infinite) Galois extensions. Show that L1L2/K and L1 ∩ L2/K
are Galois and

Gal(L1L2/K) ∼= {(σ, τ) ∈ Gal(L1/K)×Gal(L2/K)|σ|L1∩L2
= τ |L1∩L2

}

[Hint: Use the previous problem.]
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Proof. That L1 ∩L2/K is Galois follows as in the finite case, the proof of which did not use finiteness.
Every element x ∈ L1L2 is a finite rational expression in elements α1, . . . , αp ∈ L1 and β1, . . . , βq ∈ L2.
Thus x ∈ K(α1, . . . , αp, β1, . . . , βq) and so x is separable over K. We deduce that L1L2/K is separable.
Finally, suppose P (X) ∈ K[X] be irreducible with a root x ∈ L1L2. As before this implies that P (X)
has a root x ∈ K(α1, . . . , αp)K(β1, . . . , βq). Let M/K be the splitting field of the product of the
minimal polynomials of α1, . . . , αp and N/K be the splitting field of the product of the minimal
polynomials of β1, . . . , βq. This shows that M/K and N/K are normal and since L1/K and L2/K
are normal we deduce that M ⊂ L1 and N ⊂ L2. But then MN/K is normal and MN contains x
and MN ⊂ L1L2. Since MN/K is normal every root of P is then in MN and therefore in L1L2. We
deduce that L1L2/K is normal and therefore Galois.

Consider the collection {Mi} of all subextensions of L1/K which are finite Galois over K and {Nj}
of all subextensions of L2/K which are finite Galois over K. Then {MiNj} is some collection of
subextensions of L1L2/K which are finite Galois over K and certainly L1L2 =

⋃
MiNj . Using the

previous problem

Gal(L1L2/K) ∼= lim←−Gal(MiNj/K)

∼= lim←−{(σ, τ) ∈ Gal(Mi/K)×Gal(Nj/K)|σ|Mi∩Nj
= τ |Mi∩Nj

}
⊂ lim←−Gal(Mi/K)×Gal(Nj/K)

∼= Gal(L1/K)×Gal(L2/K)

But (σ, τ) ∈ Gal(L1/K)×Gal(L2/K) is in

lim←−{(σ, τ) ∈ Gal(Mi/K)×Gal(Nj/K)|σ|Mi∩Nj
= τ |Mi∩Nj

}

if and only if for each Mi and Nj one has

σ|Mi∩Nj
= τ |Mi∩Nj

But L1 ∩ L2 =
⋃
Mi ∩ Nj so this condition is equivalent to σ|L1∩L2

= τ |L1∩L2
and the conclusion

follows.

4. Show that Hn(Gal(Fqd/Fq),F×qd) = 0 if n ≥ 1.

Proof. Let φ(x) = xq be the generator of Gal(Fqd/Fq). Write N = 1+φ+· · ·+φd−1 act multiplicatively

on F×
qd

by N(x) = xφ(x)φ2(x) · · ·φd−1(x) = x1+q+···+q
d−1

. Then from class if n ≥ 1 then

Hn(Gal(Fqd/Fq),F×qd) ∼=

{
(F×
qd

)N=1/ Im(φ− 1) n odd

(F×
qd

)φ=id/ ImN n even

But (F×
qd

)φ=id = (F×
qd

)Gal(F
qd
/Fq) = F×q from the main theorem of Galois theory. Also, ImN =

{x1+q+···+qd−1 |x ∈ F×
qd
}. Let g be a generator of the cyclic group F×

qd
. Then ImN = 〈g1+q+···+qd−1〉.

Since ord(g1+q+···+q
d−1

) = (qd − 1)/(1 + q + · · · + qd−1) = q − 1 it follows that 〈g1+q+···+qd−1〉 ∼= F×q
and thus ImN = F×q . Immediately we deduce that Hn = 0 when n is even.

Also if N(x) = 1 then x1+q+···+q
d−1

= 1 and so x ∈ 〈gq−1〉. Note that (φ− 1)(x) = xq−1 whose image
is clearly 〈gq−1〉. We deduce that Hn = 0 when n is odd as well.

5. Let H ⊂ G be finite groups and N an H-module.

(a) Let IndGH N = {f : G → N |f(hg) = h(f(g)),∀g ∈ G, h ∈ H}. For g ∈ G and f ∈ IndGH N
define g(f) : G→ N by g(f)(x) = f(xg). Show that this yields an action on IndGH N which turns
IndGH N into a G-module.
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(b) Thinking of N as a Z[H]-module and IndGH N as a Z[G]-module show that IndGH N
∼= Z[G]⊗Z[H]N

as Z[G]-modules. Here Z[G]⊗Z[H]N is a Z[G]-module via the scalar multiplication [g]([h]⊗ n) =
[gh] ⊗ n. [Hint: Show that the map f 7→

∑
g∈H\G[g−1] ⊗ f(g) is well-defined and yields the

isomorphism.]

(c) If M is a G-module show that HomZ[G](M, IndGH N) ∼= HomZ[H](M,N). [Hint: Take f : M →
IndGH N to m 7→ f(m)(1) and φ : M → N to m 7→ (g 7→ φ(g(m))).]

Proof. (a): We need to check that g(h(f)) = (gh)(f). But g(h(f))(x) = g(f)(xh) = f(xgh) = (gh)(f)(x).
The action clearly commutes with the natural abelian group structure on the space of functions in IndGH N .

(b): For f ∈ IndGH N let Φ(f) =
∑
g∈H\G[g−1] ⊗ f(g). To show that Φ(f) is well-defined we need only

show that it is independent of choices of representatives of H\G in G. But if g′ = hg are representatives for
the same coset in H\G then [(g′)−1] ⊗ f(g′) = [g−1h−1] ⊗ f(hg) = [g−1][h−1] ⊗ h(f(g)) = [g−1] ⊗ f(g) as
[h−1] ∈ Z[H]. Finally, Φ is additive trivially and so Φ is a homomorphism IndGH N → Z[G]⊗Z[H] N .

Next, every element of Z[G]⊗Z[H] N is of the form
∑
g∈G[g−1]⊗ ng as Z[G] is free over Z. Fix once and

for all representatives in G of the cosets H\G. Rewrite this as∑
g∈G

[g−1]⊗ ng =
∑

g∈H\G

∑
h∈H

[(hg)−1]⊗ nhg =
∑

g∈H\G

[g−1]⊗ (
∑
h∈H

h(ng)) =
∑

g∈H\G

[g−1]⊗ fg

Note that Z[G] ∼= ⊕g∈H\Gg−1Z[H] is a free Z[H]-module. Thus Z[G]⊗Z[H]N ∼= ⊕g∈H\Gg−1Z[H]⊗Z[H]N
and so the expression

∑
g∈H\G[g−1]⊗ fg uniquely determines the fg.

Since the fg are uniquely determined we may define f : G → N by f(g) = fg. Again this is a homo-

morphism of abelian groups and clearly it is the inverse of Φ. Thus Φ : IndGH N → Z[G] ⊗Z[H] N is an
isomorphism of Z-modules. To check that it is an isomorphism of Z[G]-modules it suffices to show that for
h ∈ G, Φ(hf) = hΦ(f).

Φ(hf) =
∑

g∈H\G

[g−1]⊗ (hf)(g) =
∑

g∈H\G

[g−1]⊗ f(gh) =
∑

g′=gh∈H\G

[h(g′)−1]⊗ f(g′) = hΦ(f)

as multiplication by h permutes H\G.
(c): Suppose f : M → IndGH N is Z[G]-linear. Let Φ(f) = (m 7→ f(m)(1)). This is a map M → N that is

clearly Z-linear. Suppose h ∈ H. We need to check that it is h-linear, i.e., that Φ(f)(h(m)) = h(Φ(f)(m)).
But f is h-linear so

Φ(f)(h(m)) = f(h(m))(1) = h(f(m))(1) = f(m)(h) = h(f(m)(1))

as h ∈ H and f(m) ∈ IndGH N . Thus we get a map Ψ : HomZ[G](M, IndGH N) → HomZ[H](M,N). From
definitions it is linear in f and thus Φ is a homomorphism.

Now suppose φ : M → N is H-linear and define Ψ(φ) = (m 7→ (g 7→ φ(g(m)))). Note that for
h ∈ H, g ∈ G

Ψ(φ)(m)(hg) = φ(hg(m)) = h(φ(g(m))) = h(Ψ(φ(m)(g)))

as φ is h-linear. Thus Ψ(φ)(m) ∈ IndGH N . The map Ψ(φ) is linear in m and thus we get a Z-linear
homomorphism Ψ(φ) : M → IndGH N . We need to heck that Ψ(φ) is G-linear. Suppose h ∈ G.

Ψ(φ)(h(m))(g) = φ(g(h(m))) = φ((gh)(m)) = Ψ(φ)(m)(gh) = h(Ψ(φ)(m))(g)

Finally, note that Ψ is linear in φ and so Ψ : HomZ[H](M,N)→ HomZ[G](M, IndGH N) is a homomorphism.
Note that Ψ(Φ(f))(m)(g) = Φ(f)(g(m)) = f(g(m))(1) = g(f(m))(1) = f(m)(g) and Φ(Ψ(φ))(m) =

Ψ(φ)(m)(1) = φ(m) and so Φ and Ψ are mutual inverses yielding an isomorphism.
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