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1 Linear algebra

1.1 Symmetric and exterior powers

Definition 1. If M is an R-module define the symmetric k-th power SymkM be the quotient of M⊗k :=
M ⊗ · · · ⊗M by the submodule SkM generated by m1 ⊗ . . .⊗mk −mσ(1) ⊗ . . .⊗mσ(k) where mi ∈ M and

σ ∈ Sk. We denote the image of a pure tensor v1 ⊗ . . .⊗ vk in SymkM by v1 · · · vk.

Definition 2. If M is an R-module define the exterior k-th power ∧kM be the quotient of M⊗k by the
submodule EkM generated by m1⊗ . . .⊗mk− ε(σ)mσ(1)⊗ . . .⊗mσ(k) where mi ∈M and σ ∈ Sk. We denote

the image of a pure tensor v1 ⊗ . . .⊗ vk in ∧kM by v1 ∧ · · · ∧ vk.

Proposition 3. The assignments (−)⊗k, Symk(−) and ∧k(−) are functors on R-modules.

Proof. If f : M → N is a homomorphism of R-modules then f⊗k : M⊗k → N⊗k defined by f⊗k(
∑
mi1 ⊗

· · · ⊗mik) =
∑
f(mi1)⊗ · · · ⊗ f(mik) is an R-module homomorphism.

Projecting πk : N⊗k → SymkN and τk : N⊗k → ∧kN we see that SkM (resp. EkM ) is in the kernel of
the composite map πk ◦ f⊗k (resp. τk ◦ f⊗k). Thus πk ◦ f⊗k (resp. τk ◦ f⊗k) factor through SymkM (resp.
∧kM) yielding R-module homomorphisms Symk f and ∧kf .

It’s not hard to check that (f ◦ g)⊗k = f⊗k ◦ g⊗k, Symk(f ◦ g) = Symk(f) ◦ Symk(g) and ∧k(f ◦ g) =
∧kf ◦ ∧kg. Finally, id⊗k = id, Symk id = id and ∧k id = id.

Proposition 4. If M is a free R-module of rank n then M⊗k is free of rank nk, SymkM is free of rank(
n+k−1

k

)
and ∧kM is free of rank

(
n
k

)
.

Proof. Let v1, . . . , vn be a basis of M over R.
Then M⊗k = (⊕Rvi)⊗k ∼=

⊕
1≤i1,...,ik≤nRvi1 ⊗ · · · ⊗ vik . Let s =

⊕
1≤i1≤...≤ik≤nRvi1 ⊗ · · · ⊗ vik and

e =
⊕

1≤i1<...<ik≤nRvi1 ⊗ · · · ⊗ vik . From the definition of SkM and EkM it follows that πk(s) spans SymkM

and τk(e) spans ∧kM . Thus it suffices to show that πk|s and τk|e are injective, in which case the first
isomorphism theorem yields the statement.

Note that SkM is spanned by vi1 ⊗ · · · ⊗ vik − viσ(1) ⊗ · · · ⊗ viσ(k) for 1 ≤ i1 ≤ . . . ≤ ik ≤ n and EkM is
spanned by vi1 ⊗ · · · ⊗ vik − ε(σ)viσ(1) ⊗ · · · ⊗ viσ(k) for 1 ≤ i1 < . . . < ik ≤ n.

For the first one: we need to show that s ∩ SkM = 0. Suppose∑
1≤i1≤...≤ik≤n

αi1,...,ikvi1 ⊗ · · · ⊗ vik =
∑

1≤i1≤...≤ik≤n

∑
σ∈Sk

βi1,...,ik,σ(vi1 ⊗ · · · ⊗ vik − viσ(1) ⊗ · · · ⊗ viσ(k))
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such that the RHS contains only nonzero vectors vi1 ⊗ · · · ⊗ vik − viσ(1) ⊗ · · · ⊗ viσ(k) . Note that if viσ(1) ⊗
· · · ⊗ viσ(k) = vjτ(1) ⊗ · · · ⊗ vjτ(k) appears in the above sum then it must be that σ = τ and iu = ju or else
the tensor would not appear at all in the sum. This shows that all the coefficients β are trivial and so all
the coefficients α are also trivial.

The second case is similar.

Proposition 5. Let R be a commutative ring and M and N free R-modules.

1. Then

Symk(M ⊕N) ∼= ⊕i+j=k SymiM ⊗R Symj N

∧k(M ⊕N) ∼= ⊕i+j=k ∧iM ⊗R ∧jN

2. If f ∈ EndR(M) and g ∈ EndR(N) then Symk(f ⊕ g) = ⊕Symi(f)⊕ Symj(g) and similarly for ∧n.

3. If R→ S is a ring homomorphism then S⊗RM is a free S-module and Symk
S(S⊗RM) ∼= S⊗RSymk

RM
and ∧kS(S ⊗RM) ∼= S ⊗R ∧kRM .

Proof. See homework 1.

Lecture 2
2015-01-16

1.2 Determinants and Traces

Suppose R is a commutative ring, M is a rank n-dimensional free R-module and T ∈ HomF (V, V ). Fixing
a basis m1, . . . ,mn of M we may represent T as a matrix A = (ai,j) ∈Mn(R) such that T (mi) =

∑
ai,jmj .

Definition 6. The trace of A is TrA =
∑
ai,i and the determinant of A is

detA :=
∑
σ∈Sn

ε(σ)

n∏
i=1

ai,σ(i)

Definition 7. Let R,M, T as above. Recall that ∧nM is a rank 1 R-module and so ∧nT : ∧nM → ∧nM is
in HomR(R,R) so is given by multiplication by an element detT ∈ R called the determinant of T .

Proposition 8. Let R, M , T and A as above.

1. detT = detA

2. If A and B are two matrices then det(AB) = det(A) det(B).

Proof. (1): ∧nM = Rm1 ∧ . . . ∧mn and

∧nT (m1 ∧ . . . ∧mn) = (Tm1) ∧ . . . ∧ (Tmn)

= ∧ni=1(
∑

ai,jmj)

=
∑

1≤k1,...,kn≤n

∏
ai,kimk1 ∧ . . . ∧mkn

=
∑
σ∈Sn

∏
ai,σ(i)mσ(1) ∧ . . . ∧mσ(n)

=
∑
σ∈Sn

ε(σ)
∏

ai,σ(i)m1 ∧ . . . ∧mn

= detTm1 ∧ . . . ∧mn

(2): Also represent by A and B the two homomorphism. Then AB is the matrix of A ◦B so we need to
check that det(A ◦B) = det(A) det(B). But ∧n is a functor so ∧n(A ◦B) = ∧nA ◦ ∧nB and multiplication
by detB composed with multiplication by detA is the same as multiplication by detAdetB.
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Proposition 9. 1. The map M ⊗R ∧n−1M → ∧nM defined by 〈u, v〉 := u∧ v is a well-defined R-module
homomorphism which is a perfect pairing, i.e., 〈u,−〉 and 〈−, v〉 are not the zero homomorphisms for
u, v 6= 0. Thus ∧n−1M ∼= HomR(M,∧nM).

2. The adjoint homomorphism is T ∗ = ∧n−1T ∈ EndR(∧n−1M) where ∧n−1M has rank n. Then
〈Tu, T ∗v〉 = detT 〈u, v〉 for all u and v.

3. Under the isomorphism M ∼= HomR(M,∧nM) (given by sending mi to the linear map attaching to
m ∈ M the coefficient of mi in the expansion of m as a linear combination of m1, . . . ,mn times
m1 ∧ . . . ∧mn) interpret T ∗ in EndR(M). Then T ◦ T ∗ = detT id.

4. T is invertible in the ring EndR(M) if and only if detT ∈ R×.

Proof. (1): The map is well-defined so only need to check that that it is perfect. Let u =
∑
uimi with,

e.g., ui 6= 0. Then 〈u,∧j 6=imj〉 = ±ui 6= 0. This implies that ∧n−1M → HomR(M,R) sending v to
u 7→ 〈u, v〉 is an injective homomorphism of R-vector spaces. If f : M → R is a homomorphism such that
f(mi) =

∑
si,jmj let v =

∑
(−1)j−1si,j ∧k 6=j mk. Then u 7→ 〈u, v〉 is f so we get an isomorphism.

(2): Write v =
∑
u2 ∧ . . . ∧ un in which case

〈Tu, T ∗v〉 = (Tu) ∧ (T ∗v)

= (Tu) ∧ (
∑

(Tu2) ∧ . . . ∧ (Tun))

= ∧nT
∑

u ∧ u2 ∧ . . . ∧ un
= detTu ∧ v
= detT 〈u, v〉

Lecture 3
2015-01-19

(3): Let m 7→ φm be the isomorphism M ∼= HomR(M,∧nM) and let v ∈ ∧n−1M such that φm = 〈−, v〉.
Then T ∗ on M is defined by φT∗(m)(u) = 〈u, T ∗v〉. Also note that φT (m)(u) = φm(T (u)). Indeed, if
m =

∑
αimi and Tmi =

∑
si,jmj then φT (m)(mi) =

∑
αjsj,im1∧ . . .∧mn which is the same as φm(T (mi)).

Finally,

φT◦T∗(m)(u) = φT∗(m)(T (u))

= 〈Tu, T ∗m〉
= detT 〈u,m〉
= detTφm(u)

= φdetT ·m(u)

so T ◦ T ∗ = detT id.
(4): If T is invertible with inverse S then 1 = det(id) = det(T ◦ S) = det(T ) det(S) so detT ∈ R×.

Reciprocally, if detT ∈ R× then (detT )−1T ∗ ∈ EndR(M) is an inverse of T .

Definition 10. For a matrix A ∈Mn×n(R) let TrA be the sum of the elements on the diagonal.

Proposition 11. 1. Tr(AB) = Tr(BA) for any matrices A,B ∈Mn(R).

2. Consider m′1, . . . ,m
′
n ∈ M such that m′i =

∑
si,jmj. Then m′1, . . . ,m

′
n is also a basis of M over T if

and only if the matrix S = (si,j) is invertible, i.e., detS ∈ R×.

3. The trace TrT defined as TrA is independent of the choice of basis of M over R.

4. detT = Tr∧nT .
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Proof. (1): A simple calculation yields this.
(2): Suppose m′i is a basis. Then mi =

∑
ti,jm

′
j gives the matrix T = (ti,j) which is an inverse of S and

so S is invertible. Reciprocally, if S is invertible then the linear map given by S is an isomorphism and so
the image of a basis is a basis.

(3): If m′i is another basis given by the matrix S then S is invertible and the matrix of T with respect to
m′i is SAS−1. Thus Tr(SAS−1) = Tr(AS−1S) = Tr(A) as desired.

(4): Nothing to prove.

1.3 Characteristic and minimal polynomials

Definition 12. Let R be a commutative ring, M a rank n free R-module and T ∈ EndR(M). Define X −T
as an R[X]-linear map on the R[X]-module MX := R[X] ⊗R M as X ⊗ id−1 ⊗ T . The characteristic
polynomial of T is PT (X) := det(X − T ).

Definition 13. Any R-module M is naturally a module over the ring EndR(M), scalar multiplication given
by evaluation. Suppose now that R = F is a field and M = V is an n-dimensional F -vector space with
linear map T . Consider the ring homomorphism F [T ] → EndF (V ) sending

∑
aiT

i to v 7→
∑
aiT

iv. By
restrictions of scalars this gives V the structure of an F [T ]-module which we denote VT .

But F [T ] is a PID since F is a field and V is finite dimensional as an F -vector space so it is finitely
generated over F [T ] (the F -basis generates it). The structure theorem then says that

V ∼= F [T ]r ⊕
⊕

F [T ]/(Pi)

Finite dimensionality gives r = 0 and Pi ∈ F [T ] such that P1 | . . . | Pk which we can choose to be monic.
Define the minimal polynomial of T as the monic polynomial minT := Pk.

Proposition 14. If P (X) ∈ F [X] then P (T ) = 0 as a linear map on V if and only if minT (X) | P (X).

Proof. P (T ) = 0 iff P ∈ AnnF [T ](VT ) = (minT ) (see the section on characteristic ideals from the lectures on
modules over PIDs last semester) iff P ∈ (minT ) as desired.

Proposition 15 (Cayley-Hamilton). 1. Suppose M and N are finite rank free R-modules and S ∈ EndR(M)
and T ∈ EndR(N). Then

PS⊕T (X) = PS(X)PT (X)

2. PT (T ) = 0 and so minT | PT .

3.

PT (X) =
n∑
i=0

(−1)i(Tr∧iT )Xn−i

4. If A is the matrix of T with respect to some basis then PT (X) = PA(X) := det(XIn−A) and so PA(X)
depends on A only up to conjugacy.

5. If S is another linear map then PS◦T (X) = PT◦S(X) or, in terms of matrices, PAB = PBA.

Proof. (1): Let M have rank m and N rank n. Then ∧m+n(M ⊕N) = ∧mM ⊗ ∧nN .

∧m+n(X ⊗ Im+n − 1⊗ (S ⊕ T )) = ∧m+n(X ⊗ (idM ⊕ idN )− 1⊗ (S ⊕ T ))

= ∧m+n(X ⊗ idM −1⊗ S)⊕ (X ⊗ idN −1⊗ T )

= ∧m(X ⊗ idM −1⊗ S)⊗ ∧n(X ⊗ idN −1⊗ T )

= PS(X)PT (X)

where in the second line we used the exercise from homework 1.
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(2): I’ll give two proofs. One, direct, given below. The other, using Jordan canonical forms, will come in
the next section.

From homework 1 we see that PA(X) = P1(X) · · ·Pk(X) and Pk = minA and so minA | PA as desired.
(3): Remark that ∧iV ⊗F ∧n−iV → ∧nV sending

∑
ui⊗ vi 7→

∑
ui∧ vi is an R-module homomorphism.

Next, for I ⊂ {1, . . . , n} denote vI = ∧s∈Ivs and by I the complement. Write ∧iT (vI) =
∑
|J|=|I| αI,JvJ .

Let σI be the permutation obtained by concatenating the ordered sets I and I. Then

(Tr∧iT )v1 ∧ . . . ∧ vn =
∑
|I|=i

ε(σI) ∧i T (vI) ∧ vI

We compute

∧n(X − T )v1 ∧ . . . ∧ vn = (Xv1 − Tv1) ∧ . . . ∧ (Xvn − Tvn)

=
∑

I⊂{1,...,n}

ε(σI)(∧|I|(−T )vI) ∧ (∧|I|XvI)

=

n∑
i=0

(−1)iXn−i
∑
|I|=i

ε(σI) ∧i TvI ∧ vI

=

n∑
i=0

(−1)iXn−i Tr∧iTv1 ∧ . . . ∧ vn

and the conclusion follows.
(4): This follows from the analogous statement for determinants of linear maps.
(5): From the second part it suffices to show that Tr∧i(T ◦ S) = Tr∧i(S ◦ T ) for all i. But this is

immediate from the properties of Tr as ∧i(T ◦ S) = ∧iT ◦ ∧iS.

Lecture 4
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1.4 Canonical forms

Definition 16. By a form of a matrix A we mean another matrix B such that A ∼ B, i.e., there exists S
invertible such that A = SBS−1.

Theorem 17. Let A ∈ Mn(F ) where F is a field. Then A is conjugate to a block-diagonal matrix
diag(A1, . . . , Ak) where Ai are of the form (

01,r−1 ∗1,1
Ir−1 ∗r−1,1

)
and have entries in F . This is the rational canonical form of A.

Proof. It suffices to find a basis with respect to which the linear transformation T defined by A has matrix
of the required form. As an F [T ]-module the vector space Fn takes the form

⊕F [T ]/(Pi(T ))

The required basis is given by 0⊕ · · ·⊕ 0⊕T k⊕ 0⊕ · · ·⊕ 0 where T k is in position i and 0 ≤ k < degPi.

Theorem 18. Let F be a field and A ∈Mn(F ).

1. An eigenvalue of A is λ ∈ F such that for some v 6= 0, Av = λv in which case v is called an eigenvector.
Then λ ∈ F is an eigenvalue if and only if PA(λ) = 0. By the set of eigenvalues of A we mean the set
of roots of PA(X) counted with multiplicities.
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2. If A ∼ B then A and B have the same set of eigenvalues.

3. If the roots of PT (X) are all in F then A is conjugate to a block diagonal matrix B = diag(A1, . . . , Ak)
where Ai are of the form 

λ 1
λ 1

. . .

λ 1
λ


such that the set of elements on the diagonal of B coincides with the set of roots of PA(X). This is the
Jordan canonical form.

4. Let A be as above and R(X) ∈ F [X]. Then the set of eigenvalues of R(A) equals the set {R(λ)|PA(λ) =
0}.

Proof. (1): Av = λv iff (λ−A)v = 0 iff ker(λ−A) 6= 0. By the first isomorphism theorem this is equivalent
to λ− A being not invertible which we know to be equivalent to det(λ− A) = 0 (as F× = F − 0) and this
is equivalent to PA(λ) = 0.

(2): This follows from either the definition or PA = PB as polynomials.
(3): Consider again Fn as an F [T ] module written as ⊕F [T ]/(Pi) and we know that Pi | PT (X) which

splits as a product of linear terms by hypothesis. Thus each Pi splits as a product of linear term. The
Chinese Remainder Theorem then tells us that

Fn ∼= ⊕F [T ]/(Qi(T ))

where Qi(T ) = (T − λi)ki . We now choose as basis of Fn the vectors

0⊕ · · · ⊕ 0⊕ (T − λi)k ⊕ 0⊕ · · · ⊕ 0

where (T − λi)k is in position i and 0 ≤ k < ki. Then with respect to this basis T has matrix of the form B
and so A and B are conjugate. Finally, it is immediate that the set of diagonal elements of B are its set of
eigenvalues, which coincides with the set of eigenvalues of A.

(4): Note that if A = SBS−1 then R(A) = SR(B)S−1 and so R(A) has Jordan canonical form R(B)
and the eigenvalues of R(A), which are the diagonal elements of R(B) are exactly as required.

Lecture 5
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2 Integral rings

2.1 Basic properties

Definition 19. Suppose A ⊂ B are commutative rings. An element b ∈ B is integral over A if there exists
a monic polynomial P (X) ∈ A[X] such that P (b) = 0.

Say that B is integral over A if every element of B is integral over A.

Example 20. 1.
√

5 ∈ Q(
√

5) is integral over Z. Indeed it’s a root of X2 − 5.

2.
1 +
√

5

2
∈ Q(

√
5) is integral over Z. Indeed, it satisfies x2 − x− 1 = 0.

3.
√

5/2 is not integral over Z since it satisfies no monic equation.

Proposition 21. Suppose A ⊂ B are commutative rings. The following are equivalent.
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1. x ∈ B is integral over A.

2. A[x] is finitely generated as an A-module.

3. A[x] ⊂M for an A-algebra M which is finitely generated as an A-module.

Proof. (a) implies (b): If xn + an−1x
n−1 + · · · a0 = 0 then for k ≥ 0, xn+k = −(an−1x

n+k−1 + · · · + a0x
k)

and so A[x] = A[x]deg≤n−1. Thus A[x] is generated by 1, x, . . . , xn−1.
(b) implies (c): Take M = A[x].
(c) implies (a): Suppose M = Am1 + · · ·Amr. Consider φ multiplication by x on M . Let φ(mi) =∑
aijmj . Then T = φIr − (aij) acts trivially on ⊕Ami. Let T ∗ be the adjoint matrix, still in Mr×r(A[φ])

and compute T ∗·T . Since T acts by 0 we deduce T ∗ ·T = 0 and so det(T ) = 0. But det(T ) = det(φIr−(aij))
is a monic polynomial in φ. Write det(T ) = φr + ar−1φ

r−1 + · · · a0 = 0. Since φ is multiplication by 0 we
deduce that xr + ar−1x

r−1 + · · ·+ a0 = 0 and so x is integral over A.

Corollary 22. Let Ã = {b ∈ B|b integral over A}. Then Ã is a subring of B which contains A.

Remark 1. The ring Ã is called the integral closure of A in B. If A = Ã say that A is integrally closed in B.
An integral domain A is said to be integrally closed if it is so in its fraction field.

Proof. If x ∈ Ã then A[x] is finitely generated over A. If y ∈ Ã then clearly y is also integral over A[x] so
A[x, y] is finitely generated over A[x] and so it is finitely generated over A. But A[x + y], A[xy] ⊂ A[x, y]
and so x+ y and xy are integral over A.

Corollary 23. Let A ⊂ B ⊂ C. If C is integral over B and B is integral over A then C is integral over A.

Proof. Pick c ∈ C satisfying cn +
∑
bn−ic

n−i = 0. Then c is integral over A[b0, . . . , bn−1] ⊂ B. Thus
A[b0, . . . , bn−1, c] is finitely generated over A[b0, . . . , bn−1]. But bi ∈ B are integral over A so A[b0, . . . , bn−1]
are finitely generated over A. Thus A[c] ⊂ A[b0, . . . , bn−1, c] which is finitely generated over A and so c is
integral over A.

Corollary 24. Suppose A ⊂ B and Ã is the integral closure of A in B. Then Ã is integrally closed in B.

Proof. We need to show that
˜̃
A = Ã. But by the previous proposition

˜̃
A is integral over A and thus it is

contained in Ã and the equality follows.

2.2 Integrality and localizations

Proposition 25. Let A ⊂ B such that B is integral over A.

1. If b ⊂ B is an ideal then B/b is integral over A/(A ∩ b).

2. If S ⊂ A is multiplicatively closed containing 1 then S−1B is integral over S−1A.

Proof. (1): The monic equation in A[X] works for the residue classes too.
(2): If bn + an−1b

n−1 + · · · a0 = 0 then

(b/s)n + (an−1/s)(b/s)
n−1 + · · ·+ a0/s

n = 0

is a monic equation in S−1A[X] satisfied by b/s ∈ S−1A.

Corollary 26. Suppose A ⊂ B are integral domains and S ⊂ A is multiplicatively closed containing 1. Let
Ã be the integral closure of A in B. Then S−1Ã is the integral closure of S−1A in S−1B.
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Proof. From the proposition we know that S−1Ã ⊂ S̃−1A so we only need the other implication. Suppose
b/s is integral over S−1A. Then b/s satisfies a monic equation of the form

(b/s)n + (an−1/sn−1)(b/s)n−1 + · · ·+ a0/s0 = 0

in S−1B.
Multiply by (s

∏
si)

n. We get

W = (b
∏

si)
n + an−1(

∏
si)/sn−1(b

∏
si)

n−1 + · · ·+ a0(
∏

si)
n/s0 = 0

which occurs in S−1B but W ∈ B and all the coefficients are in A. Thus there exists t ∈ S such that tW = 0.
Since B is a domain either t = 0 or W = 0. If t = 0 then 0 ∈ S so S−1? = 0 for all ? and there is nothing

to prove. Else we have W = 0 and so b
∏
si is integral over A. Finally

b/s =
b
∏
si

s
∏
si
∈ S−1Ã

as desired.

Example 27. Let R = C[t2, t3] ⊂ C[t]. Then FracR = C(t). Moreover, next time we’ll show that UFDs
are integrally closed and so C[t] is integrally closed.

Now x = t3/t2 = t ∈ FracR and x2 − t2 = 0 is monic in R[x] so x = t is integral over R. Thus C[t] ⊂ R̃

and we conclude that C[t] ⊂ R̃ ⊂ C̃[t] = C[t] and so the integral closure of R (in its fraction field) is C[t].

Lecture 6
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Proposition 28. Suppose R is a UFD. Then R is integrally closed.

Proof. Suppose x = p/q ∈ FracR is written in lowest terms, i.e., (p, q) = 1. If x is integral over R we want
to show that in fact x ∈ R. Suppose xn + an−1x

n−1 + · · ·+ a0 = 0. Clearing denominators we get

pn + an−1p
n−1q + · · ·+ a0q

n = 0

but then we see that q | pn. This implies that every prime factor of q must also divide p yielding a
contradiction. Thus q has no prime factors and so q is a unit which implies that x = p/q ∈ R as desired.

Proposition 29. Let A be an integral domain. The property “A is integrally closed” is local, i.e., the
following are equivalent:

1. A is integrally closed.

2. Ap is integrally closed for all prime ideals p.

3. Am is integrally closed for all maximal ideals m.

Proof. (1) implies (2): Let B = FracA. Then A = Ã implies, from a previous proposition, that ˜(A− p)−1A =

(A− p)−1Ã and it so Ap is integrally closed.
(2) implies (3) is tautological.

(3) implies (1): Consider f : A→ Ã and its localizations fm : Am → Ãm. Since Am are integrally closed
it follows that fm are all surjective. But surjectivity is a local property (from last semester; actually last
semester we proved that injective is a local property but surjective is analogous) and so f is surjective. Thus
A is also integrally closed.

For completion, here is a proof (don’t include in lecture, mention these notes). Suppose f : M → N is a

homomorphism of modules over a ring R. (E.g., M = A and N = Ã as A-modules.) If f is surjective then
fp : Mp → Np is surjective for each prime ideal p of A. Indeed, if f(m) = n then f(m/s) = n/s. Now suppose
that fm is surjective for all maximal ideals m ⊂ A. Consider the exact sequence M → N → coker f → 0
which yields the exact sequence Mm → Nm → (coker f)m → 0. Surjectivity of fm implies that (coker f)m = 0
and “equal to 0” is a local property of modules and so coker f = 0. Thus f is surjective.

8



2.3 Dedekind Domains

We’ve seen that UFDs are very convenient rings but there are many rings that are not UFDs. These rings
occur naturally in number theory but we’ll study them a little mainly because of their use in Galois theory
later in the semester. For example they will provide an algorithm for computing Galois groups of polynomials
with rational coefficients.

Definition 30. A Dedekind domain is an integral domain R which is not a field satisfying

1. R is integrally closed.

2. R is Noetherian.

3. Every nonzero prime ideal of R is maximal.

Remark 2. Dedekind domains are the next best thing after UFDs. There are non-UFD Dedekind domains
(see later) but they still satisfy a UFD property for ideals and not for elements.

Example 31. 1. Every PID is Noetherian, integrally closed (being UFD) and every prime ideal is max-
imal by UFD. Thus every PID is a Dedekind domain.

2. In particular Z and Fp[X] are Dedekind domains.

The following is a plentiful source of Dedekind domains.

Proposition 32. Suppose R is a Dedekind domain with fraction field K. Let L be a field which contains K
and is finitely generated as a K-module. Then the integral closure S of R in L is also a Dedekind domain.

Before we give the proof here are some examples.

Example 33. 1. Let K ⊂ C be a field which is generated by finitely many elements which are integral
over Q (these are the algebraic elements). Then the integral closure of Z in K (the so-called ring of
integers of K) is a Dedekind domain.

2. Let R be the integral closure of Z inside any field K ⊃ Fp(X) which is generated by finitely many
algebraic elements. Then R is a Dedekind domain. (Such R appear as smooth functions on smooth
curves over Fp.)

Lemma 34. Suppose R is an integral domain which is integral over a field. Then R is also a field.

Proof. See homework 2.

(Partial) Proof of Proposition 32. The ring S is integrally closed by definition.
Suppose q is a prime ideal of S. We already saw that S/q is integral over R/(q ∩ R). But q ∩ R is a

nonzero prime ideal and so is maximal as R is Dedekind. (Need to check that in fact q∩R is nonzero. This
too will be on homework 2.)

The previous lemma then implies that S/q is a field and so q is maximal.
Finally, we need that S is Noetherian. This is the harder part and requires Galois theory.

Proposition 35. Suppose R is a Dedekind domain and S ⊂ R is multiplicatively closed and contains 1.
Then S−1R is a Dedekind domain.

Proof. Indeed, S−1R is integrally closed (see last lecture). Moreover, every prime ideal of S−1R is of the
form S−1p for a prime ideal of R. Since R is Dedekind we deduce that p is maximal and thus we get that
S−1p is maximal as S−1R/S−1p ∼= S−1(R/p) and the localization of a field is a field.

Finally, we need that S−1R is Noetherian. Every ideal of S−1R is of the form S−1I for some ideal I of
R. Since S−1I ∼= S−1R ⊗R I it follows that S−1I is finitely generated over S−1R as I is finitely generated
over R.

9



A challenge:

Remark 3. Take P (X,Y ) ∈ C[X,Y ]. Then C[X,Y ]/(P (X,Y )) is integrally closed if and only if the set
{(a, b) ∈ C2|P (a, b) = 0} is a complex manifold.

Lecture 7
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2.4 Discrete Valuation Rings

Definition 36. A discrete valuation on a field K is a surjective function v : K× → Z such that:

1. v(xy) = v(x) + v(y) for all x, y ∈ K× and

2. v(x+ y) ≥ min(v(x), v(y)).

If we set v(0) =∞ then we see that the above two properties are satisfied for all x, y ∈ K.

Example 37. 1. Take K = C(X) and α ∈ C. Define vα(P (X)/Q(X)) as the power of X−α in R = P/Q
written in lowest terms. It is easy to see that vα satisfies the two conditions for valuations and is a
discrete valuation.

2. More generally if K = F (x) and P (X) ∈ F [X] an irreducible polynomial let vP (M(X)/N(X)) to tbe
power of P (X) in the rational function M(X)/N(X).

3. Take K = Q and p a prime. Let vp(m/n) to be the power of p in m/n.

Remark 4. Let (K, v) be a discretely valued field and α ∈ (1,∞). Define |x| := α−v(α). Then |xy| = |x||y|
and |x+ y| ≤ max(|x|, |y|) ≤ |x|+ |y|. Thus | · | defines a metric space structure on K.

Lemma 38. Let v be a discrete valuation on a field K. Then the set Ov = {x ∈ K|v(x) ≥ 0} is a Noetherian
local ring called the discrete valuation ring of v. The unique maximal ideal mv = {x ∈ K|v(x) > 0} is
principal. Every proper ideal of Ov is of the form mnv for some n > 0.

Proof. The set Ov is clearly a ring and mv is clearly an ideal since v(x+ y) ≥ min(v(x), v(y)) and v(xy) =
v(x) + v(y).

Suppose that v(x) = 0, i.e., x ∈ Ov −mv. Then v(1/x) = −v(x) = 0 (v(1) = v(12) = 2v(1)) so 1/x ∈ Ov
which implies that Ov is local.

The map v is surjective and if v(a) = 1 then for all x ∈ mv have v(x/a) ≥ 0 so mv = (a).
Suppose I is an ideal of Ov and x ∈ Ov has minimal valuation v(x) = k. If y ∈ I then v(y) ≥ v(x) =

kv(a) so v(y/x) ≥ 0 so I = (x) is principal. Since v(x) = v(ak) it follows that x/ak is a unit and so
I = (ak) = mkv .

Definition 39. A discrete valuation ring is Ov for some field K and discrete valuation v.

The following proposition shows that discrete valuation rings appear naturally.

Proposition 40. Let R be a Dedekind domain. Then Rp is a discrete valuation ring for every prime ideal
p.

Proof. The ring Rp is Noetherian and local. A prime ideal of Rp is the localization of a prime ideal of R
contained in p. Thus the localization is either 0 or p since every prime ideal of R is either 0 or maximal.
Finally, Rp is integrally closed as R is and so Rp is a discrete valuation ring by the following lemma.

Lemma 41. Let R be a local Noetherian integral domain with maximal ideal m. Suppose that m is the only
nonzero prime ideal of R. Then the following are equivalent.

1. R is a discrete valuation ring.
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2. The maximal ideal m is principal.

3. R is integrally closed.

Proof. (1) implies (2) and (3): From the above we already know that if R is a dvr then m is principal and
in fact R is a PID. Thus R is integrally closed, being a UFD.

(2) implies (3): If R is a field then it is a dvr by taking v(a) = 0 for all a 6= 0. Otherwise we may choose
a ∈ R, nonzero and not a unit.

Recall that
√

(a) is the intersection of all maximal ideals containing (a). Since m is the only maximal

ideal it follows that
√

(a) = m. As R is Noetherian the ideal m is generated by m1, . . . ,mk (in fact by a single

element as it must be principal, but we don’t know this yet). Since mi ∈
√

(a) it follows that mN
i ∈ (a)

for some big enough N . Using the multinomial formula we deduce that if u ∈ m then ukN ∈ (a) and so
mkN ⊂ (a). Choose n minimal such that mn ⊂ (a). Since a is not a unit it follows that n ≥ 1.

Pick b ∈ mn−1 − (a) (by minimality of n). Take x = a/b ∈ K and by construction x−1 = b/a /∈ R but
x−1m ⊂ R. The set x−1m is a submodule of R and thus an ideal. If x−1m = R then immediately m = (x)
as desired. Otherwise it is contained in the maximal ideal x−1m ⊂ m. Consider the action of A[x−1] on
m. Since m is finitely generated the element x−1 satisfies the characteristic polynomial of the multiplication
by x−1 map on this finite dimensional space and so x−1 would be integral. But R is integrally closed by
assumption and so x−1 ∈ R contradicting the choice of x.

Lecture 8
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(3) implies (1): For a ∈ R− 0 we have seen that there exists a smallest n ≥ 0 such that mn ⊂ (a). Define
v(a) := n.

Now let’s check the conditions on v. Write m = (x). Then (a) ⊃ (xv(a)) and v(a) is the largest such
exponent. This implies that a | xv(a) but a - xv(a)−1, i.e., xv(a)/a ∈ R − m. But then xv(a)/a = u is a unit
and so (a) = (xv(a)).

Suppose a = xmu and b = xnv where 0 ≤ m ≤ n and u, v ∈ R×. Then v(a) = m and v(b) = n. Note
that ab = xm+nuv with uv ∈ R× and so v(ab) = m+ n. Moreover, a+ b = xm(u+ xn−mv) = xv(a+b)w for
some unit w. But then clearly m ≤ v(a+ b). Thus v is a discrete valuation on R.

Finally, let K = FracR and define v(x/y) := v(x) − v(y). Then v is easily checked to be a discrete
valuation on K and R = Ov.

3 Homological algebra

3.1 Categories and functors

Definition 42. A category is an algebraic structure consisting of a class of objects Ob as well as, for each
X,Y ∈ Ob, a class of morphisms Hom(X,Y ) satisfying the following properties:

1. If X,Y, Z ∈ Ob there exists a composition operation Hom(X,Y ) × Hom(Y, Z) → Hom(X,Z) sending
f × g to g ◦ f ;

2. For morphisms X
f−→ Y

g−→ Z
h−→W the associativity relation h ◦ (g ◦ f) = (h ◦ g) ◦ f holds;

3. For each X ∈ Ob, there exists idX ∈ Hom(X,X) such that for any X
f−→ Y we have idY ◦f = f and

f ◦ idX = f .

Example 43. 1. The category Sets whose objects are sets and morphisms are functions of sets.

2. The category Groups whose objects are groups and morphisms are group homomorphisms.

3. The category TopSpaces whose objects are topological spaces and morphisms are continuous maps.
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4. The category Manifolds whose objects are manifolds and morphisms are smooth functions.

Definition 44. Let C be a category. A subcategory A of C is a category such that Ob(A) ⊂ Ob(C) and
for X,Y ∈ Ob(A), HomA(X,Y ) ⊂ HomC(X,Y ).

Example 45. 1. The category AbGroups is a subcategory of Groups.

2. The category Manifolds is a subcategory of TopSpaces.

Definition 46. A covariant functor F : A → B between two categories A and B is an assignment F :
Ob(A)→ Ob(B) together with, for each X,Y ∈ Ob(A), an assignment F : Hom(X,Y )→ Hom(F (X), F (Y ))
such that:

1. F (idX) = idF (X);

2. F (g ◦ f) = F (g) ◦ F (f).

A contravariant functor is similar except the assignment F : Hom(X,Y ) → Hom(F (Y ), F (X)) is in the
opposite direction.

Example 47. 1. Consider the assignment F : Groups → Sets sending the groups G to the set G. This
is a covariant functor, called the forgetful functor.

2. Let R be a ring. The following are covariant functors:

(a) Fa(R) = (R,+) from Rings→ AbGroups.

(b) Fm(R) = (R, ·) from Rings→ Monoids.

(c) Fn(R) = (Nil(R),+) from Rings → AbGroups. This last one needs an argument: Certainly Fn
takes rings to abelian groups. Suppose f : R → S is a ring homomorphism. If x ∈ Nil(R) then
xn = 0 for some n in which case 0 = f(0) = f(xn) = f(x)n and so f(x) ∈ Nil(S). Thus we get a
homomorphism Nil(f) : Nil(R)→ Nil(S).

3. Let Rings′ be the category whose objects are rings R and whose morphisms f : R → S are ring
homomorphisms such that f(1) = 1. (Next time we’ll see that this is simply the category of Z-
algebras.) Then Gm(R) := (R×, ·) is a covariant functor. Certainly the assignment takes rings to
groups. Suppose f : R → S is a ring homomorphism such that f(1) = 1. If x ∈ R× then xx−1 = 1
so 1 = f(1) = f(x)f(x−1) and so f(x) ∈ S×. This yields the group homomorphism f : R× → S× as
desired.

Definition 48. Some adjectives related to functors. A covariant functor F : A → B is said to be:

1. Full if for X,Y ∈ Ob(A) the assignment F : HomA(X,Y )→ HomB(F (X), F (Y )) is surjective.

2. Faithful if F : HomA(X,Y )→ HomB(F (X), F (Y )) is injective.

3. Essentially surjective if for every Y ∈ Ob(B) there exists X ∈ Ob(A) such that Y ∼= F (X).

Example 49. 1. The subcategory AbGroups of Groups is a full subcategory in the sense that the inclu-
sion morphism is full. Indeed, a morphism of abelian groups is just a morphism of groups that happen
to be abelian.

2. Let LocRings be the category whose objects are local rings R with maximal ideal m, denoted (R,m). A
morphism f : (R,m)→ (S, n) is a ring homomorphism R→ S such that f(m) ⊂ n. Then LocRings is a
subcategory of Rings but it is not full. Indeed, there exist ring homomorphism of local rings f : R→ S
such that f is not a local ring homomorphism, i.e., f(m) 6⊂ n; for example, for any ring R and two
prime ideals p ⊂ q one gets (see last semester’s final lectures) a ring homomorphism f : Rq → Rp.
The localizations are local rings but qRp = Rp and so is not included in pRp, thus is not a local ring
homomorphism.
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Example 50. 1. For a ring R consider direct systems of R-modules. These form a category with mor-
phisms (fi) : (Mi)→ (Ni) such that ιi,j ◦ fi = fj ◦ ιi,j for i ≤ j.

2. For a ring R consider inverse systems of R-modules. These form a category with morphisms (fi) :
(Mi)→ (Ni) such that πi,j ◦ fi = fj ◦ πi,j for i ≥ j.

Example 51. Suppose C is a category and X ∈ Ob(C). One can construct two categories relative to X.

1. Define C→X with objects morphisms f : Y → X. A morphisms φ : (Y
f−→ X) → (Z

g−→ X) in this
category consists of a morphism φ : Y → Z such that f ◦ φ = g. When C is the category of topological
spaces then C→X is the category of families of topological spaces indexed by the fixed topological space
X.

2. Define CX→ with objects morphisms f : X → Y . A morphisms φ : (X
f−→ Y ) → (X

g−→ Z) in this
category consists of a morphism φ : Y → Z such that φ ◦ f = g. When C is the category of rings and
R is a ring then CR→ is the category of R-algebras.

3.2 Complexes of modules over a ring R

Definition 52. Let R be a ring. A complex over R is a sequence of R-module homomorphisms

. . .→Mn−1
dn−1−→ Mn

dn−→Mn → . . .

such that dn ◦ dn−1 = 0. This complex is denoted M•.
A morphism of complexes (f•) : M• → N• is a collection of morphisms fn : Mn → Nn such that

fn ◦ dn−1 = dn ◦ fn−1 for all n. This yields a category ComplexesR of complexes of modules over R.

Definition 53. Let M• be a complex over R. The i-th cohomology of M• is the R-module quotient

Hi(M•) = ker di/ Im di−1

Example 54. Consider the two term complex M
f−→ N by which I mean . . .→ 0→ M

f−→ N → 0→ . . .
with M in degree 0 and N in degree 1. Then

Hi(M → N) =


ker f i = 0

coker f i = 1

0 i 6= 0, 1

Lemma 55. The construction Hi is a functor ComplexesR → ModR.

Proof. We need to show that if f• : M• → N• is a morphism of complexes then we get a morphism
Hi(f•) : Hi(M•)→ Hi(N•) of R-modules satisfying the requirements of Hi being a functor. If x ∈ Hi(M•)
then dix = 0 and so di(fi(x)) = fi+1(di(x)) = 0 so fi(x) ∈ ker di so fi restricts to a morphism ker di → ker di.
Moreover, fi(di−1(y)) = di−1(fi−1(y)) so fi(Im di−1) ⊂ Im di−1 and so fi yields the quotient morpshism
Hi(M•)→ Hi(N•).

Definition 56. A complex M• is said to be exact if Hi(M•) = 0 for all i.

An exact sequence of complexes is a sequence of complex maps 0 → M•
f•−→ N•

g•−→ P → 0 such that
for each i, the sequence 0→Mi → Ni → Pi → 0 is exact.
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Theorem 57. Suppose 0→ M•
f•−→ N•

g•−→ P → 0 is an exact sequence in ComplexesR. Then there exist
R-module homomorphisms δi : Hi(P •)→ Hi+1(M•) such that the following sequence is exact:

. . .→ Hi−1(P •)
δi−1

−→ Hi(M•)
Hi(f•)−→ Hi(N•)

Hi(g•)−→ Hi(P •)
δi−→ Hi+1(M•)→ . . .

Proof. In class I constructed δi and left as an exercise that the sequence is exact. The whole proof amounts
to simple diagram chasing. See, for instance, Dummit and Foote Theorem 2 on page 778.
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Example 58. As an application of the theorem we’ll compute the de Rham cohomology of the n-sphere
Sn. First, a little notation.

If M is a real manifold of dimension n then the differential forms fit in a complex:

A•m : 0→ A0
M → A1

M → . . .AnM → 0

where AiM are the real i-differential forms. For example A0
M are the functions on M . Then the de Rham

cohomology of M is defined as the cohomology of this complex of differentials

Hi
dR(M) := Hi(A•M )

It satisfies the following properties:

1. If M is connected then H0
dR(M) = R. Indeed, H0

dR(M) = ker(d : A0
M → A1

M ) and on a connected
manifold the only functions with zero differential are the constant functions. [More generally H0(M)
is Rk where k is the number of connected components of M .]

2. Hi
dR(M) = 0 if i > dimM . Indeed, the complex terminates in degree n.

3. If M ⊃ N are manifolds such that there exists a smooth retraction, i.e., a smooth function f : M → N
such that f |N = idN , then Hi

dR(M) = Hi
dR(N) for all i.

4. If M = A ∪B for two manifolds A and B then there exists an exact sequence of complexes

0→ A•M → A•A ⊕A•B → A•A∩B → 0

We’re ready to show that

Hi
dR(Sn) =

{
R i = 0, n

0 i 6= 0, n

First H0
dR(Sn) = R as Sn is connected and Hi

dR(Sn) = 0 for i > n. Take A to be the upper semisphere
and B the lower semisphere, enlarged so that A∪B = Sn. Then A has a smooth retraction to the top pole,
B has a smooth retraction to the lower pole and A ∩ B has a smooth retraction to the equator, which is
Sn−1.

Apply Theorem 57 to the exact sequence of complexes 0 → A•Sn → A•A ⊕ A•B → A•A∩B → 0 to get the
so-called Mayer-Vietoris long exact sequence

. . .→ Hi
dR(Sn)→ Hi

dR(A)⊕Hi
dR(B)→ Hi

dR(A ∩B)→ Hi+1
dR (Sn)→ . . .

Applying the property about smooth retractions this becomes

. . .→ Hi
dR(Sn)→ Hi

dR(point)⊕Hi
dR(point)→ Hi

dR(Sn−1)→ Hi+1
dR (Sn)→ . . .
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If i > 0 then Hi(point) = 0 as the point has dimension 0 and so we see that

0→ Hi
dR(Sn−1)→ Hi+1

dR (Sn)→ 0

and exactness implies that the connecting homomorphism must be an isomorphism. Thus Hi+1
dR (Sn) ∼=

Hi(Sn−1). By induction this yields the result when 1 < i ≤ n.
Finally, to compute H1

dR(Sn) note that the beginning of the long exact sequence is

0→ R→ R2 → R→ H1
dR(Sn)→ 0

and a little diagram chasing implies that H1
dR(Sn) = 0. Indeed, the first map is injective so the kernel of the

second map is R. The first isomorphism theorem implies that its image is also R. But then the third map
is the 0 map and so the kernel of the last map is 0, which implies that H1

dR(Sn) = 0.

3.3 Derived functors

Definition 59. Recall that a covariant functor F : ModR → ModS is right-exact (left-exact) if for any exact
sequence 0→M ′ →M →M ′′ → 0 the sequence

0→ F (M ′)→ F (M)→ F (M ′′)→ 0

is right-exact (left-exact).

Definition 60. We say that a covariant functor F : ModR → ModR is additive if for any M,N ∈ ModR
the functor induces a homomorphism of abelian groups F : HomR(M,N)→ HomS(F (M), F (N)).

Theorem 61 (Derived functors). Suppose F is right-exact and additive from ModR to ModS. There exist
functors LiF : ModR → ModS such that for any exact sequence 0→M ′ →M →M ′′ → 0 the sequence

. . . L2F (M ′)→ L2F (M)→ L2F (M ′′)→ L1F (M ′)→ L1F (M)→ L1F (M ′′)→ F (M ′)→ F (M)→ F (M ′′)→ 0

is exact. The functors LiF are the left-derived functors of F .
If F were left-exact then there would exist right-derived functors RiF such that

0→ F (M ′)→ F (M)→ F (M ′′)→ R1F (M ′)→ R1F (M)→ R1F (M ′′)→ R2F (M ′)→ . . .

is exact.

Remark 5. The defining long exact sequence for derived functors is reminiscent of Theorem 57 and in fact
our strategy of proving Theorem 61 will be to construct, for each module M , a complex C•M and then define
LiF (M) := Hi(C•M ). There are two challenges:

1. To construct C•M in a way which yields the long exact sequence

2. To ensure that the definition of LiF (M) depends only on M and not on the complex C•M .

In order to overcome these challenges we’ll need some technical tools.

3.3.1 Chain homotopies

Definition 62. A map of complexes f• : M• → N• is said to be null-homotopic if there exist R-module
homomorphisms sn : Mn → Nn−1 such that

fn = sn+1 ◦ dn + dn−1 ◦ sn

for all n.
Two morphisms of complexes f• and g• are said to be chain homotopic if f• − g• is null-homotopic.
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Proposition 63. Suppose f•, g• : M• → N• are chain homotopic. Then Hi(f•) = Hi(g•) : Hi(M•) →
Hi(N•) for all i.

Proof. Suppose x ∈ Hi(M•). Since f• − g• is null homotopic we may write fi − gi as si+1 ◦ di + di−1 ◦ si.
Then fi(x)− gi(x) = di−1(si(x)) and so Hi(f•)(x)−Hi(g•)(x) = 0 ∈ Hi(N•).

Corollary 64. Suppose M• is a complex such that id : M• →M• is null-homotopic. Then M• is exact.

Proof. The previous proposition implies that Hi(id) = Hi(0) on Hi(M•). Thus id = 0 on Hi(M•) which
can only happen if Hi(M•) = 0, i.e., if M• is exact.
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Lemma 65. Suppose f•, g• : M• → N• are chain homotopics maps. If F is a covariant additive functor
then F (f•), F (g•) : F (M•)→ F (N•) are also chain homotopic.

Proof. If f = ds+ sd then F (f) = F (ds+ sd) = F (d)F (s) + F (s)F (d) and F (d) are the differentials on the
complex F (M•).

3.3.2 Projective resolutions

Recall that a module P over R is said to be projective if the left-exact functor HomR(P,−) is in fact exact.
In other words, for any surjection A → B → 0 and any f : P → B there exists g : P → A making the
diagram commute. Also recall that

1. Free modules are projective.

2. In fact a module is projective if and only if it is a direct summand of a free module.

3. Projective modules are flat over R.

4. (From HW 4) Every projective module M over a ring R is locally free in the sense that Mp is free for
every prime ideal p of R. Moreover, every finitely generated and locally free module over a Noetherian
ring is in fact projective.

Definition 66. A left resolution of an R-module M is an exact sequence of the form

. . .→M2 →M1 →M0 →M → 0

in which case we denote M• the complex . . .→M2 →M1 →M0.

Proposition 67. Every R-module M has a projective resolution, i.e., a left resolution

. . .→ P2 → P1 → P0 →M

such that Pi are projective R-modules.

Proof. I did this in class. In fact you get a free resolution. See, for example, Dummit and Foote, the first
half of page 779.

Example 68. If R is a PID and M finitely generated then we know that M has a projective resolution of
the form 0→ Rn−r → Rn →M → 0 where r is the rank of M .
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Proposition 69. Let M and N be two R-modules. Suppose . . .→ P2 → P1 → P0 →M → 0 is a projective
resolution of M and . . . → Q2 → Q1 → Q0 → N is any left resolution of N . Then for any R-module
homomorphism f : M → N there exist R-module homomorphisms fn : Pn → Qn such that

. . . // P2

f2

��

// P1
//

f1

��

P0
//

f0

��

M

f

��

// 0

. . . // Q2
// Q1

// Q0
// N // 0

is a commutative diagram.
Moreover, the map of complexes f• : P• → Q• is unique up to a chain homotopy.

Proof. We’ll construct fn by induction on n. Since P0 is projective, the composite morphism P0 →M → N
lifts to f0 : P0 → Q0.

P0
//

f0

��   

M

f

��

// 0

Q0
// N // 0

Suppose fi is constructed for i ≤ n. Let K = ker(Pn → Pn−1) and L = ker(Qn → Qn−1). We get a
commutative diagram with exact rows

0 // K

φ

��

j

  

// Pn //

fn

��

Pn−1

fn−1

��
0 // L

ι // Qn // Qn−1

Here the diagonal morphism j is composition. Since the bottom row is left-exact we get an exact sequence

0→ Hom(K,L)
ι∗−→ Hom(K,Qn)

d∗−→ Hom(K,Qn−1)

Note that d∗j = d ◦ j = fn−1 ◦ d2 = 0 and by exactness in the middle j = ι∗φ for some φ ∈ Hom(K,L).
Exactness of the two resolutions implies that we also get a commutative diagram with exact rows

Pn+1
//

!!
fn+1

��

K //

φ

��

0

Qn+1
// L // 0

and the same argument as in the n = 0 case yields fn+1.
Now we need to show that f• is uniquely defined up to homotopy. Equivalently, if f = 0 then we need

to show that f• is null homotopic. Again, we’ll construct the maps sn : Pn → Qn+1 by induction on n.
For n = −1 with P−1 = M simply take s−1 = 0. Suppose fn = dsn−1 + snd. We would like to construct
sn+1 : Pn+1 → Qn+2 such that fn+1 = dsn + sn+1d.

Pn+2
//

fn+2

��

Pn+1
//

fn+1

��

Pn //

fn

��
sn||

Pn−1

sn−1||
fn−1

��
Qn+2

// Qn+1
// Qn // Qn−1

Note that dfn+1 = fnd = (dsn + sn−1d)d = dsnd and so d(fn+1 − snd) = 0. This implies that fn+1 − snd
yields a homomorphism

Pn+1

ww
fn+1−snd
��

Qn+2
// // ker(Qn+1 → Qn)
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where the diagonal arrow, call it sn+1, exists because Pn+1 is projective. Thus fn+1 − snd = dsn+1 as
desired.

3.3.3 Derived functors

We are ready to construct derived functors.

Construction of the left-derived functors from Theorem 61. Suppose F is a right-exact additive func-
tor of R-modules.

Construction of LiF on objects: Let M be an R-module and let P• →M → 0 be a projective reso-
lution. Consider the complex F (P•) : . . . → F (P2) → F (P1) → F (P0) and define LiF (M) := Hi(F (P•)) =
ker(F (Pi) → F (Pi−1))/ Im(F (Pi+1) → F (Pi)). We will show that these satisfy the requirements in the
theorem.

Independence of choice of projective resolution: First, we show that LiF (M) is independent of the
choice of projective resolution. Suppose Q• →M → 0 is another projective resolution. Consider the identity
map id : M → M . The previous proposition implies the existence of maps of complexes f• : P• → Q• and
g• : Q• → P• such that the following diagram commutes

. . . // P2

f2

��

// P1
//

f1

��

P0
//

f0

��

M // 0

. . . // Q2
//

g2

OO

Q1
//

g1

OO

Q0
//

g0

OO

M // 0

and the maps f• and g• are unique up to chain homotopies.
Applying the functor F yields the commutative diagram

. . . // F (P2)

F (f2)

��

// F (P1) //

F (f1)

��

F (P0) //

F (f0)

��

F (M) // 0

. . . // F (Q2) //

F (g2)

OO

F (Q1) //

F (g1)

OO

F (Q0) //

F (g0)

OO

F (M) // 0

and again the maps F (f•) and F (g•) are unique up to chain homotopy by Lemma 65.
Since Hi is a functor on complexes we get maps Hi(fi) : Hi(F (P •)) → Hi(F (Q•)) and Hi(gi) :

Hi(F (Q•))→ Hi(F (P •)) which are now uniquely defined because null homotopic maps of complexes become
the zero map on cohomology.

Next, note that fi ◦ gi lifts the identity on M → M . But the identity id : Pi → Pi also lifts the identity
M → M and so fi ◦ gi is chain homotopic to id. But then Hi(fi) ◦ Hi(gi) = Hi(fi ◦ gi) = Hi(id) = id
and similarly for Hi(gi) ◦Hi(fi). We conclude that Hi(F (P •)) ∼= Hi(F (Q•)) are isomorphic and that this
isomorphism is natural since the maps Hi(fi) and Hi(gi) are unique.

Thus LiF (M) is well-defined.
Computing L0F : Note that L0F (M) = ker(F (P0)→ 0)/ Im(F (P1)→ F (P0)). Since F is right-exact it

follows that F (P1)→ F (P0)→ F (M)→ 0 is right-exact and so ker(F (P0)→ F (M)) = Im(F (P1)→ F (P0)).
The first isomorphism theorem then gives L0F (M) = F (M).
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Construction of LiF on morphisms: If M → N is a homomorphism and P • → M → 0 and
Q• → N → 0 are projective resolutions then lift M → N to maps P • → Q•. This map is unique up to chain
homotopy and thus induces a unique map Hi(F (P •))→ Hi(F (Q•)) which is the map LiF (M)→ LiF (N)
as desired.
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Theorem 70 (Derived functors). Suppose F : ModR → ModS is covariant, additive and right-exact.

1. For every exact sequence 0→M ′ →M →M ′′ → 0 there exists a long exact sequeence

. . .→ LiF (M ′)→ LiF (M)→ LiF (M ′′)→ Li−1F (M ′)→ . . .→ L1F (M ′′)→ F (M ′)→ F (M)→ F (M ′′)→ 0

2. If

0 // M ′ //

��

M //

��

M ′′ //

��

0

0 // N ′ // N // N ′′ // 0

is a commutative diagram with exact rows then the resulting diagram is also commutative

. . . // LiF (M ′) //

��

LiF (M) //

��

LiF (M ′′) //

��

Li−1F (M ′) //

��

. . .

. . . // LiF (N ′) // LiF (N) // LiF (N ′′) // Li−1F (N ′) // . . .

Proof. I’ll prove part 1 and leave part 2 as a laborious but straightforward exercise.
Let (P ′)• → M ′ → 0 and (P ′′)• → M ′′ → 0 be projective resolutions. From homework 4 there exists a

projective resolution (P ′)•⊕ (P ′′)• →M → 0 yielding a commutative diagram with exact rows and columns

0

��

0

��
(P ′)• //

��

M ′ //

��

0

(P ′)• ⊕ (P ′′)• //

��

M //

��

0

(P ′′)• //

��

M ′′ //

��

0

0 0

Note that F commutes with direct sums. Indeed, let iA, iB be the natural inclusions of A and B into A⊕B
and let pA, pB be the natural projections. Then F (pA) ◦ F (iA) = F (idA) = idF (A) and similarly for B.
Consider F (iA) + F (iB) : F (A)⊕ F (B)→ F (A⊕B) and F (pA)⊕ F (pB) : F (A⊕B)→ F (A)⊕ F (B). The
compositions are the identity in both directions so F (A⊕B) ∼= F (A)⊕ F (B). This implies that we get the
commutative diagram

F ((P ′)•) //

��

F (M ′) //

��

0

F ((P ′)•)⊕ F ((P ′′)•) //

��

F (M) //

��

0

F ((P ′′)•) // F (M ′′) // 0

Finally the long exact sequence attached to the exact sequence of complexes 0 → F ((P ′)•) → F ((P ′)•) ⊕
F ((P ′′)•)→ F ((P ′′)•)→ 0 yields the desired long exact sequence.

19



Theorem 71. The functors in this theorem are ModR → ModS.

1. If F is contravariant right-exact additive then there exist contravariant additive left-derived functors
LiF with L0F = F such that

(a) For every exact sequence 0→M ′ →M →M ′′ → 0 there exists a long exact sequeence

. . .→ LiF (M ′′)→ LiF (M)→ LiF (M ′)→ Li−1F (M ′′)→ . . .→ L1F (M ′′)→ F (M ′)→ F (M)→ F (M ′′)→ 0

(b) If

0 // M ′ //

��

M //

��

M ′′ //

��

0

0 // N ′ // N // N ′′ // 0

is a commutative diagram with exact rows then the resulting diagram is also commutative

. . . // LiF (M ′′) //

��

LiF (M) //

��

LiF (M ′) //

��

Li−1F (M ′′) //

��

. . .

. . . // LiF (N ′′) // LiF (N) // LiF (N ′) // Li−1F (N ′′) // . . .

2. If F is covariant left-exact additive then there exist covariant additive right-derived functors RiF with
R0F = F such that

(a) For every exact sequence 0→M ′ →M →M ′′ → 0 there exists a long exact sequeence

. . .→ RiF (M ′)→ RiF (M)→ RiF (M ′′)→ Ri+1F (M ′)→ . . .

(b) If

0 // M ′ //

��

M //

��

M ′′ //

��

0

0 // N ′ // N // N ′′ // 0

is a commutative diagram with exact rows then the resulting diagram is also commutative

. . . // RiF (M ′) //

��

RiF (M) //

��

RiF (M ′′) //

��

Ri+1F (M ′) //

��

. . .

. . . // RiF (N ′) // RiF (N) // RiF (N ′′) // Ri+1F (N ′) // . . .

3. If F is contravariant left-exact additive then there exist covariant additive right-derived functors RiF
with R0F = F such that

(a) For every exact sequence 0→M ′ →M →M ′′ → 0 there exists a long exact sequeence

. . .→ RiF (M ′′)→ RiF (M)→ RiF (M ′)→ Ri+1F (M ′′)→ . . .

(b) If

0 // M ′ //

��

M //

��

M ′′ //

��

0

0 // N ′ // N // N ′′ // 0
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is a commutative diagram with exact rows then the resulting diagram is also commutative

. . . // RiF (M ′′) //

��

RiF (M) //

��

RiF (M ′) //

��

Ri+1F (M ′′) //

��

. . .

. . . // RiF (N ′′) // RiF (N) // RiF (N ′) // Ri+1F (N ′′) // . . .

Proof. For a category C denote Cop be the opposite category whose objects are Ob(Cop) = Ob(C) but such
that a morphism X → Y in Cop is simply a morphism Y → X in C.

Thus HomC(X,−) = HomCop(−, X) and HomCop(X,−) = HomC(−, X). Thus implies that projec-
tives/injectives in C are the same as injectives/projectives in Cop.

Suppose F : C → D is a functor. Let oF : Cop → D be the same as F on objects and defining
oF (X → Y ) = F (Y → X) where the second morphism is in C. Also define F o : C → Dop such that
F o(X) = F (X) and F (X → Y ) be the corresponding morphism in the opposite category.

Note that if F is contravariant then oF and F o are covariant. If F is left/right exact then F o is right/left
exact.

In class I used the notation F op =o F o.
(1): Define LiF =o (Li(

oF )).
(2): Define RiF = (LiF

op)op.
(3): Define RiF = (LiF

o)o.
Then all the conditions follow from the previous theorem.

Example 72. For modules over a ring R the functor HomR(M,−) is covariant left-exact additive while
HomR(−, N) is contravariant left-exact additive.

Lemma 73. Let R be a ring, F covariant right-exact additive and G covariant left-exact additive.

1. If P is projective then LnF (P ) = 0 for n ≥ 1.

2. If R is a PID then LnF (M) = 0 for n ≥ 2 for all finitely generated M .

3. If R = Z then LnF (M) = 0 for n ≥ 2 without restrictions on M .

4. If I is injective then RnG(I) = 0 for n ≥ 1.

5. If R is a PID then RnG(M) = 0 for n ≥ 2 and all M .

6. If F is exact then LnF = 0 and RnF = 0 for all n ≥ 1.

Proof. (1): Consider the projective resolution . . . → 0 → P → P → 0. Then LnF (P ) = Hn(F (. . . → 0 →
P )) which vanishes for n ≥ 1.

(2): If M is finitely generated over R a PID then M sits in an exact sequence 0→ Ra → Rb → M → 0
which is a free and so projective resolution. Then LnF (M) = Hn(F (. . . 0→ Ra → Rb)) which vanishes for
n ≥ 2.

(3): If R = Z take N the free abelian group generated by elements of M and the surjection N →M → 0.
From last semester: every subgroup of a free abelian group is free abelian and so we have a free resolution
0→ K → N →M → 0. The argument from (2) yields the vanishing result again.

(4): By definition RnF (I) = (LnF
op)op(I) = LnF

op(I). But I is now an object in the opposite category
where it is projective. Part (1) this yields RnF (I) = 0 for n ≥ 1.

(5): Recall from last semester that injective over PID is equivalent to divisible. From the homework every
R module injects into an injective R-module so 0→M → I0. The cokernel is also divisible and so injective.
Thus 0 → M → I0 → I1 → 0 is an injective resolution in ModR which yields a projective resolution in the
opposite category. The argument from (3) then gives RnF (M) = 0 for n ≥ 2.
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(6): Suppose P • → M → 0 is a projective resolution with differentials di : Pi → Pi−1. Then for each

i ≥ 1 we have the exact sequence 0 → ker di → Pi
di−→ Im di → 0 yielding 0 → F (ker di) → F (Pi)

F (di)−→
F (Im di)→ 0. This is also exact as F is exact and so F (ker di) = kerF (di) and F (Im di) = ImF (di).

In the complex F (P •) note that ImF (di+1) = F (Im di+1) = F (ker di) = kerF (di) so F (P •) is also exact,
except in degree i = 0. Thus LnF (M) = 0 for n ≥ 1. For RnF use injective resolutions instead.

3.4 Tor and Ext

3.4.1 Definitions

I skipped the proofs in this section since they are elaborated exercises in the diagram chases of double
complexes, which, while straightforward, we haven’t discussed.

Proposition 74. Let R be a ring and M and N two R-modules. Recall that M ⊗R − and − ⊗R N are
covariant right-exact additive. Then

Ln(M ⊗R −)(N) ∼= Ln(−⊗R N)(M)

and this common module is denoted TorRn (M,N).

Corollary 75. Since M ⊗R N ∼= N ⊗RM we get an isomorphism TorRn (M,N) ∼= TorRn (N,M) for all n.

Proposition 76. Let R be a ring and M and N two R-modules. Recall that HomR(M,−) is covariant
left-exact additive while HomR(−, N) is contravariant left-exact additive. Then

Rn HomR(M,−)(N) ∼= Rn HomR(−, N)(M)

and this common module is denoted ExtnR(M,N).

3.4.2 Basic properties

Proposition 77. 1. If r ∈ R is not a zero divisor then TorR1 (R/(r),M) = M [r] := {m ∈ M |rm = 0}
while TorRn (R/(r),M) = 0 for n ≥ 2.

2. If I ⊂ R is an ideal then TorR1 (I,M) = ker(I ⊗RM →M) where the map is the natural multiplication
map.

3. If M is flat over R then TorRn (M,N) = 0 for all n ≥ 1 and N .

4. If TorR1 (M,N) = 0 for all N then M is flat over R.

Proof. (1): Since r is not a zero divisor we get the free resolution . . . → 0 → R
×r−→ R → R/(r) → 0.

Immediately we get vanishing in degrees n ≥ 2. The long exact sequence yields

0→ TorR1 (R/(r),M)→M
×r−→M →M/rM → 0

and the isomorphism follows.
(2): Consider the exact sequence 0 → I → R → R/I → 0. This is no longer a projective resolution in

general and so there’s no vanishing in degrees n ≥ 2. But again 0 → TorR1 (R/I,M) → I ⊗R M → M is
exact and the isomorphism follows.

(3): If M is flat then M ⊗R − is exact and so the left-derived functors vanish.
(4): If 0→ N ′ → N → N ′′ → 0 is exact then the long exact sequence

. . .→ TorR1 (M,N ′′)→ N ′ ⊗RM → N ⊗RM → N ′′ ⊗RM → 0

yields exactness of M ⊗R − because of the vanishing of TorR1 (M,−).
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Example 78. Let I = (x, y) ⊂ R = C[x, y]. Then I is not flat over R. In homework 5 you’ll show that
TorR1 (I,R/I) ∼= TorR2 (R/I,R/I) ∼= C. This procedure is known as dimension shifting.

Proposition 79 (Dimension shifting). Suppose F is covariant additive right-exact. Let M be an R-module
and 0→ K → P →M → 0 an exact sequence with P projective. Then

LnF (M) ∼= Ln−1F (K)

for n ≥ 2.

Proof. For n ≥ 2 the long exact sequence gives

. . .→ LnF (K)→ LnF (P )→ LnF (M)→ Ln−1F (K)→ Ln−1F (P )→ . . .

and the result follows since left-derived functors vanish on projectives in degree ≥ 1.

Proposition 80. 1. If r ∈ R is not a zero divisor then ExtnR(R/(r),M) = 0 for n ≥ 2 and Ext1
R(R/(r),M) ∼=

M/rM .

2. If P is projective and I is injective then ExtnR(P,−) = 0 and ExtnR(−, I) = 0 for n ≥ 1.

Proof. (1): The long exact sequence of HomR(−,M) attached to 0→ R
×r−→ R→ R/(r)→ 0 gives

0→ HomR(R/(r),M)→ HomR(R,M)
×r−→ HomR(R,M)→ Ext1

R(R/(r),M)→ Ext1
R(R,M)

Since R is projective we get that Ext1
R(R,M) = 0 and so Ext1

R(R/(r),M) = HomR(R,M)/rHomR(R,M).
Since HomR(R,M) ∼= M the result follows.

(2): Follows from the fact that the two ext groups are right derived functors of the exact functors
HomR(P,−) and HomR(−, I).

3.4.3 Ext and extensions

Definition 81. Let R be a ring and M and N two R-modules. An extension of M by N is an exact sequence
of R-modules

0→ N
i−→ X

j−→M → 0

An isomorphism of extensions is a commutative diagram

0 // N // X //

��

M // 0

0 // N // Y // M // 0

Denote EXT R(M,N) the isomorphism classes of extensions.

Theorem 82. There is a bijection between EXT R(M,N) and Ext1
R(M,N).
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Example 83. Suppose we want to count the extensions of Z/pZ by itself, i.e., exact sequences of the form
0 → Z/pZ → Z/p2Z → Z/pZ → 0 as Z-modules. (This is related to representation theory where such
extensions are reducible 2-dimensional representations of the finite group Z/pZ over the field Fp.) To count
the number of extensions we find the cardinality of Ext1

Z(Z/p,Z/p) ∼= (Z/p)/p(Z/p) = Z/p, which is p.
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Proof of Theorem. We will construct two maps θ : EXT R(M,N)→ Ext1
R(M,N) and ξ : Ext1

R(M,N)→
EXT R(M,N) such that θ ◦ ξ = id and ξ ◦ θ = id which yields the required bijection.

Construction of θ: Suppose E : 0→ N → X →M → 0 is an extension. Taking HomR(M,−) yields

. . .→ HomR(M,M)
δ−→ Ext1

R(M,N)→ . . .

and define θ(E) = δ(idM ).

Construction of ξ: Let 0 → K
i−→ P

j−→ M → 0 be an exact sequence with P projective. Taking
HomR(−, N) gives

. . .→ HomR(K,N)→ Ext1
R(M,N)→ Ext1

R(P,N)→ . . .

Since P is projective Ext1
R(P,N) = 0 and so HomR(K,N) → Ext1

R(M,N) is a surjection. For α ∈
Ext1

R(M,N) we can find β : K → N projecting to α.

Define X = coker(K
i⊕(−β)−→ P ⊕ N), N → X via n 7→ 0 ⊕ n, P → X via p 7→ p ⊕ 0 and X → M via

p⊕ n 7→ j(p). All but the last map are clearly R-module homomorphisms. For the last one we only need to
check it is well-defined, which follows since i(k)⊕−β(k) maps to j(i(k)) = 0.

It is straightforward to check that the following diagram is commutative with exact rows:

0 // K
i //

β

��

P
j //

��

M // 0

0 // N // X // M // 0

Define ξ(α) as the bottom extension. I left it as an exercise to check that different lifts β of α yield
isomorphim extensions.

Checking ξ ◦ θ = id: Start with 0→ N → X →M → 0.

0 // K
i //

β

��

P
j //

ζ

��

M // 0

0 // N
u // X

v // M // 0

Here ζ : P → X is a lift of idM ◦j which exists since P is projective. Next, HomR(K,−) is left-exact and so

HomR(K,N)→ HomR(K,X)→ HomR(K,M)

is exact. Note that v∗(ζ ◦ i) = v(ζ(i)) = j(i) = 0 and by exactness ζ ◦ i = u∗(β) for some β : K → N .

Then P ⊕ N
ζ+u−→ X is surjective. Indeed, let x ∈ X. By surjectivity of j there is p ∈ P such that

j(p) = v(x) and so u(x − ζ(p)) = 0 which implies that x − ζ(p) ∈ Imu as desired. What is the kernel? If
ζ(p) + u(n) = 0 then v(ζ(p)) = 0 so j(p) = 0 so p = i(k) for some k ∈ K. Moreover, u(n) = −ζ(i(k)) =

−u(β(k)) so by injectivity of u we get n = −β(k). We get the exact sequence 0→ K
i⊕−β−→ P ⊕N → X → 0.

Thus the original extension is isomorphic to the above construction attached to the map β. It is an
elaborate exercise to check that in fact β is a lift of θ(E) = δ(idM ).

Similarly, I left as an exercise that θ ◦ ξ = id.

Remark 6. In fact EXT R(M,N) can be made into an R-module in which case one gets EXT R(M,N) ∼=
Ext1

R(M,N) as an isomorphism of R-modules by showing that θ and ξ are R-module homomorphisms.

Remark 7. In fact one can show that there is a bijection (and in fact an R-module homomorphism, suitably
defined) between ExtnR(M,N) and isomorphism classes of exact sequences

0→ N → Xn → . . .→ X1 →M → 0
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3.4.4 More properties of Tor and Ext

I didn’t prove any of the statements in this section. The applications are more interesting than the proofs.

Proposition 84.

TorRn (M, lim−→Ni) = lim−→TorRn (M,Ni)

TorRn (M,
⊕

Ni) =
⊕

TorRn (M,Ni)

Corollary 85. If A is an abelian group then TorZ1 (Q/Z, A) = Ators.

Proof. Recall from last semester that Q/Z = lim−→Z/nZ and so

TorZ1 (Q/Z, A) ∼= TorZ1 (lim−→Z/nZ, A)

∼= lim−→TorZ1 (Z/nZ, A)

∼= lim−→A[n]

∼= Ators

where the last line comes from the midterm last semester.
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Proposition 86. Suppose R is commutative and S is a flat R-algebra. Then

S ⊗R TorRn (M,N) ∼= TorSn(M ⊗R S,N ⊗R S)

Corollary 87. If R is commutative and p ⊂ R is a prime ideal then TorRn (M,N)p ∼= TorRp
n (Mp, Np).

Moreover, TorRn (M,N) = 0 if and only if TorRp
n (Mp, Np) = 0 for all prime ideals p.

Proof. It follows from the proposition applied to the flat R-algebra Rp recalling that localization at p is
⊗RRp. The last statement follows from the fact that “a module is 0” is a local property.

Proposition 88.

ExtnR(
⊕

Mi, N) ∼=
∏

ExtnR(Mi, N)

ExtnR(M,
∏

Ni) ∼=
∏

ExtnR(M,Ni)

Remark 8. Ext does not commute with limits. For example, note that Q = lim−→Z (homework 7 last semester)

and Ext1
Z(Z,Z) = 0 as Z is projective. However, Ext1

Z(Q,Z) is not zero. In fact it is isomorphic to Ẑ⊗ZQ/Q
where Ẑ = lim←−Z/nZ. This last group is deeply connected with number theory: Ẑ ⊗Z Q forms a locally
compact Hausdorff topological ring called the finite adeles which is at the core of modern number theory.

Example 89. I claim that if A is a torsion abelian group then

ExtnZ(A,Z) =

{
0 n 6= 1

HomZ(A,Q/Z) n = 1

and the RHS in degree 1 is simply the dual group.

Proof. Consider 0→ Z→ Q→ Q/Z→ 0. Since Q and Q/Z are divisible groups they are injective Z-modules
and so we immediately get vanishing of Ext in degree ≥ 2. The long exact sequence is

0→ Hom(A,Z)→ Hom(A,Q)→ Hom(A,Q/Z)→ Ext1(A,Z)→ Ext1(A,Q) = 0

Since A is torsion any homomorphism into a torsion-free group must be trivial. Thus Hom(A,Q) = 0 and
Ext0Z(A,Z) = Hom(A,Z) = 0. The exact sequence then implies Ext1

Z(A,Z) ∼= HomZ(A,Q/Z).
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Proposition 90. Suppose R is commutative and Noetherian and M is finitely generated. Then

ExtnR(M,N)p ∼= ExtnRp
(Mp, Np)

As a result if M is finitely generated then ExtnR(M,N) = 0 is a local property, as in the case of Tor.

3.4.5 Intersection numbers

Suppose we want to answer the following question: how many points of intersection do two plane curves
have? We’d like an answer that is algebraically formulated in sufficient generality that it can account for
multiple points of intersection (for example y2 = x2(x+ 1) and x = 0 intersecting at the origin in a double
point) as well as curves with multiplicity (e.g., the double line x = 0 intersects the triple line y = 0 in 6
points).

The answer is provided by the following theorem.

Theorem 91. Suppose R is a localization of C[x1, . . . , xn] in which case it is a local Noetherian ring with
maximal ideal m (more generally R is allowed to be any regular local ring). Let I, J ⊂ m be ideals such that
I + J contains some power of m. Let k = R/m be the residue field.

1. Then TorRn (R/I,R/J) is a finite dimensional k-vector space.

2. The expression

I · J =
∑

(−1)n dimk TorRn (R/I,R/J)

is a finite sum called the intersection number of I and J .

Example 92. 1. Let’s compute (x) · (y) in R = C[x, y](x,y). We already know that

TorRn (R/(x), R/(y)) =


R/(x)⊗R R/(y) n = 0

(R/(y))[x] n = 1

0 n ≥ 2

since the ideals are principal. But (R/(y))[x] = 0 since a polynomial times x is divisible by y iff the

polynomial is divisible by y (C[x, y] is a UFD). Also R/(x)⊗RR/(y) is the cokernel of R/(x)
×y−→ R/(x)

(tensor with R/(x) the exact sequence 0 → R → R → R/(y) → 0) and so the tensor product is
R/(x, y) ∼= k. Thus the intersection number is 1.

2. Let’s compute (x2) · (y3) (the double vertical axis intersecting the triple horizontal axis). Again the
higher Tor groups all vanish and

(x2) · (y3) = dimk R/(x
2)⊗R R/(y3) = dimk R/(x

2, y3)

But R/(x2, y3) consists of polynomials with no x2 or y3 and visibly this is 6-dimensional over k = C.
Thus (x2) · (y3) = 6.
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3. How many times do y2 = x2(x + 1) and x = 0 intersect at the origin? Let’s take again R to be
C[x, y](x,y), I = (y2 − x2(x+ 1)) and J = (x). Again all Tor groups vanish so we have

(f) · (g) = dimCR/(y
2 − x2(x+ 1), x) = dimCR/(x, y

2) = dimC C[y]/(y2) = 2
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Proof of Theorem. (1): Note that TorR1 (R/I,R/J) is the kernel of multiplication R/J⊗RI → R/J and so
is annihilated by I and similarly by J . We’ll show that in fact TorRn (R/I,R/J) is annihilated by both I and
J . Suppose a ∈ J . Then for a module M multiplication by a is the zero map on M ⊗R R/J →M ⊗R R/J .
Let P • → M → 0 be a projective resolution. We already know that the multiplication by a map on M
extends to maps on P • which has to be chain homotopic to the natural multiplication by a map on P •.
Thus multiplication by a on M yields multiplication by a on the cohomology of the complex P • ⊗R R/J .
But a = 0 in R/J so this multiplication by a map is the 0 map on the complex and thus on the cohomology
of the complex. Thus multiplication by a annihilates Hn(P • ⊗R R/J) = TorRn (M,R/J).

Thus TorRn (R/I,R/J) is annihilated by I + J and thus by a power mn for some n. It is also finitely
generated over R and thus there is a surjection from a finite power of R/mn, and so it is a finite dimensional
k-vector space.

(2): This would require too much extra work. Suffices to say that localizations of C[x1, . . . , xn] and
regular local rings in general have finite global dimension which implies that TorRn (M,N) = 0 for n large
enough.

Lemma 93. Suppose R is a commutative Noetherian ring and M,N finitely generated R-modules. Then
TorRn (M,N) are finitely generated R-modules.

Proof. I’ll prove this by induction on n. Consider 0 → K → Rn → M → 0 be an exact sequence which
exists as M is finitely generated. Then TorR1 (M,N) ⊂ K ⊗R N .

Now Rn is Noetherian since R is a Noetherian ring so K ⊂ Rn is Noetherian. This implies that it is
finitely generated so K ⊗R N is finite generated and thus Noetherian. Again Tor1, being a submodule of a
Noetherian module must be Noetherian and thus finitely generated.

Finally, for n ≥ 2, the long exact sequence gives TorRn (M,N) ∼= TorRn−1(K,N). Since K and N are
finitely generated this yields the inductive step.

3.5 Representable functors

Suppose C is a locally small category by which I mean any category such that HomC(X,Y ) is a set for any
two objects X and Y . Then given a fixed X ∈ Ob(C) the functor F = HomC(X,−) is a covariant functor
F : C → Sets. There so-called Hom functors are very useful because instead of being abstract functors one
can think of them as the object X. This is particularly useful in geometry.

In order to study these Hom functors and their special role in category theory we first define natural
transformations of functors which play the role of morphisms of functors.

Definition 94. If F,G : A → B are two covariant functors a natural transformation Φ : F → G is a
collection of morphisms {ΦX : F (X) → G(X)|X ∈ Ob(A)} such that if f : X → Y is any morphism in A
then the following diagram commutes:

F (X)
F (f) //

ΦX

��

F (Y )

ΦY

��
G(X)

G(f) // G(Y )

Example 95. I forgot, please remind me.

Theorem 96 (Yoneda’s lemma). Suppose F : C → Sets is any covariant functor. Then for any object
X ∈ C there is a bijection between the set F (X) and the set of natural transformations from the functor
HomC(X,−) to the functor F .

Proof. Given an element u ∈ F (X) one defines Φ as a natural transformation from the functor HomC(X,−)
to the functor F as follows. For each object Y we need to give a morphism ΦY : HomC(X,Y ) → F (Y ).
Since f : X → Y then F (f) : F (X) → F (Y ) and we define ΦY (f) = F (f)(u). I leave it a diagram chasing
exercise to check that this yields a natural transformation.
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Given a natural transformation Φ we note that ΦX : HomC(X,X)→ F (X) is a morphism and we attach
to Φ the element ΦX(idX) ∈ F (X). This is well-defined.

I leave it as an exercise that these two constructions are inverses to each other and thus yield bijections.

Remark 9. If F were contravariant then the same result holds if we replace HomC(X,−) with HomC(−, X).
(This is what happens in geometry.)
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Definition 97. A covariant functor F : C → Sets is said to representable if there exists an object X ∈ Ob(C)
and u ∈ F (X) such that the natural transformation HomC(X,−)→ F attached to u is a natural bijection.
In other words for each Y we want HomC(X,Y ) → F (Y ) attaching to f : X → Y the element F (f)(u) to
be a bijection of sets. In this case we say that F is represented by (X,u) which is then the universal object.

Example 98. From now on Rings is the category of rings where homomorphisms take 1 to 1.

1. Consider the forgetful functor F : Groups → Sets sending the group G to the underlying set G.
Then F is a covariant functor which is represented by (Z, 1). Indeed, we note that if f : Z → G
is a group homomorphism then F (f) = f as a function of sets Z → G. We need to check that
HomGroups(Z, G)→ G sending f to f(1) is a bijection. Note that f(n) = f(1)n for all n so the map is
bijective.

2. Consider the forgetful functor F : Rings→ Sets sending the ring R to the set R. Then F is represented
by (Z[X], X). Again if f : Z[X] → R then F (f) = f as a function of sets. We need to check that
HomRings(Z[X], R) → R sending f to f(X) is a bijection. Since f(1) = 1 it follows that for every
polynomial P (X) we have f(P (X)) = P (f(X)) so f is uniquely defined by f(X) and so the natural
transformation is a bijection.

3. Consider the functor F : Rings → Sets sending the ring R to the set of units R×. We already know
that this is a covariant functor. It is represented by (Z[X,X−1], X). Again F (f) = f for any ring
homomorphism f . We need to check that HomRings(Z[X,X−1], R) → R sending f to f(X) yields a
bijection. First, X ∈ Z[X,X−1]× and so f(X) ∈ R×. Moreover, if P (X,X−1) is any polynomial then,
as f(1) = 1, we have f(P (X,X−1)) = P (f(X), f(X)−1) and so f is uniquely defined by f(X). We
deduce the natural transformation yields a bijection.

4. If R is a commutative ring and M and N are R-modules then the functor F : ModR → Sets sending P
to the set of R-bilinear maps M ×N → P yields a covariant functor BilR(M ×N,−). It is represented
by M ⊗R N and the natural bilinear map M × N → M ⊗R N sending m × n 7→ m ⊗ n. Indeed, we
know that HomR(M ⊗R N,P ) ∼= BilR(M ×N,P ) not only as sets but also as R-modules.

5. The functor attaching to P the set of k-linear maps Mk → P is represented by M⊗k.

6. The functor attaching to P the set of symmetric k-linear maps Mk → P is represented by SymkM .

7. The functor attaching to P the set of skew-symmetric k-linear maps Mk → P is represented by ∧kM .

8. The functor Nil : Rings → Sets attaching to R the set Nil(R) of nilpotents in not representable.
Suppose it were, by a ring R and a universal nilpotent element u ∈ Nil(R). Then for some n one has
un = 0. Since Nil is represented by (R, u) for any ring S one has HomRings(R,S) → Nil(S) sending
f : R → S to f(u) is a bijection. Take S = Z[x]/(xn+1). Then x ∈ S is clearly nilpotent and so for
some f : R→ S one has f(u) = x. But then xn = f(u)n = f(un) = f(0) = 0 which is not true in S.

9. Consider the matrix T0 =

(
1 1

1

)
over C. Recall from homework that the functor Def attaching to a

C-algebra R with residue field C the set of rank 2 free R-modules V and endomorphisms T ∈ EndR(V )
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such that T ⊗R idC = T0 is a covariant functor. I claim it is represented by the universal object

(R, V = R2, T ) where R = C[x, y, z, t](x,y,z,t) and T =

(
1 + x 1 + y
z 1 + t

)
. First, note that R is local with

maximal ideal mR = (x, y, z, t) and residue field R/mR = C and T ⊗R R/mR = T0. We need to check
that for any C-algebra S with residue field C there is a bijection HomC(R,S) → Def(S) sending f to
f(T ). Next, every C-algebra homomorphism f is uniquely determined by f(x), f(y), f(z), f(t) so the
assignment f 7→ f(T ) uniquely defines f . Finally, if TS ∈ EndS(S2) is such that TS ⊗S S/mS = T0

then TS =

(
1 + b 1 + b
c a+ d

)
for some a, b, c, d ∈ mS and so setting f(x) = a, f(y) = b, f(z) = c, f(t) = d

yields a unique homomorphism f : R→ S with f(T ) = TS . Thus the map f 7→ f(T ) is a bijection.
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4 Fields

4.1 Basics

Proposition 99. Let K be a field. Consider the natural map Z→ K. Either this map is injective in which
case we say K has characteristic 0 or there is a unique prime p such that p = 0 in K in which case we say
that K has characteristic p.

Proof. Consider the kernel 0→ ker→ Z→ K. Then Z/ ker ⊂ K is an integral domain and so ker is a prime
ideal of Z. Thus it is either (0) or (p) for some prime p.

Definition 100. An extension of fields L/K is simply a containment L ⊃ K. If L/K is an extension then
L is a K-vector space and we define [L : K] = dimK L.

Example 101. 1. [C : R] = 2.

2. If K is a finite field then there exists a prime p and n ≥ 1 such that |K| = pn. Indeed, since K is finite
Z cannot inject into K so K has characteristic p for some prime p. Then Fp = Z/(p) ⊂ K and K/Fp is
a finite extension of fields. Let [K : Fp] = n. Then K as an Fp-vector space is Fnp so it has cardinality
pn.

Proposition 102. If L/M/K are field extensions then [L : K] = [L : M ][M : K].

Proof. Done in class. See Dummit and Foote Theorem 12 on page 523.

4.2 Algebraic extensions

Definition 103. An element α is said to be algebraic over a field K if it is integral over K. An extension
L/K is said to be algebraic if it is integral. The algebraic closure of a field K in a field L is its integral
closure. The field K is said to be integrally closed in L if every element of L algebraic over K is in K.

Proposition 104. Let K be a field. For any α denote K[α] as the ring of polynomial expressions in α with
K-coefficients. Denote K(α) = FracK[α].

1. If α, β are algebraic over K then α+ β and αβ are algebraic over K.

2. If α is algebraic over K then K[α] = K(α).

3. If L/M is algebraic and M/K is algebraic then L/K is algebraic.

4. If L/K is an extension then the algebraic closure of K in L is a field M which is algebraically closed
in L.
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5. Every finite extension L/K is algebraic.

6. Every algebraic extension L/K can be written as a union L = ∪Li where Li/K is finite.

Proof. (1): Follows from the analogous statement for integral extensions.
(2): Suppose P (α) ∈ K[α] is nonzero. We need to show that 1/P (α) ∈ K[α]. By (1) β = P (α) is algebraic

and so it satisfies a polynomial equation Q(β) = 0 of smallest degree n of the form anβ
n+ · · ·+a1β+a0 = 0.

We may assume that a0 6= 0 because otherwise, since β 6= 0, we can divide by β to obtain an equation of
smaller degree. But then

1

β
= −a1

a0
− a2β

a0
− · · · − anβ

n−1

a0

Thus β−1 ∈ K[β] ⊂ K[α].
(3): Follows from the analogous statement for integral extensions.
(4): Suppose α ∈ L is algebraic over K satisfying P (X) = 0, with α 6= 0. Then 1/α satisfies

XdegPP (1/X) = 0 and so 1/α ∈ L is again algebraic over K. Thus M is a field. That it is algebraically
closed in L follows from the analogous statement for integral extensions.

(5): If α ∈ L then K(α) ⊂ L is also finite over K since sub vector spaces of finite dimensional vector
spaces are again finite dimensional. Thus α is integral and thus algebraic over K.

(6): If L/K is algebraic then
L = ∪α∈LK(α)

and K(α)/K is finite since α is algebraic.
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Lemma 105. Let φ : F1 → F2 be a homomorphism between two fields with no restriction on φ(1). Then
either φ = 0 or φ is injective. If φ is surjective then it is an isomorphism.

Proof. Consider the ideal kerφ ⊂ F1. It is either (0) in which case φ is injective, or it is F1 in which case
φ = 0. If φ is surjective then φ 6= 0 and so it is also injective.

Definition 106. Let α be algebraic over K. Then the set Iα = {P (X) ∈ K[X]|P (α) = 0} is an ideal of
K[X]. It is principal generated by mα(X) ∈ K[X] which is uniquely defined if assumed to be monic. The
polynomial mα is the minimal polynomial of α.

Proposition 107. If α is algebraic over K then

1. mα(X) is irreducible.

2. K(α) ∼= K[X]/(mα(X)).

Proof. (1): It suffices to show that Iα is a prime ideal. If PQ ∈ Iα then P (α)Q(α) = 0 so one of P (α) and
Q(α) is 0 which implies that P or Q is in Iα. Thus Iα is prime.

(2): The map K[X] → K[α] = K(α) is surjective. Moreover, since mα(α) = 0 it follows that the map
factors through the homomorphism of fields K[X]/(mα(X)) → K(α). This is again surjective and thus an
isomorphism by the previous lemma.

We have seen that if P (X) is an irreducible polynomial in K[X] then K[X]/(P (X)) is a finite extension
of K which contains some root of P (X). The next result shows that the root does not matter.
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Proposition 108. Suppose φ : K
∼=−→ K ′ is a field isomorphism and P (X) ∈ K[X] is an irreducible

polynomial. The polynomial P ′(X) = φ(P (X)) ∈ K ′[X] is clearly irreducible. If α is a root of P and β is a
root of P ′ then there exists a commutative diagram

K
φ

∼=
//� _

��

K ′� _

��
K(α)

∼= // K ′(β)

In particular any two roots of an irreducible polynomial over K generate isomorphic extensions of K.

Proof. Note that since φ(P ) = P ′ the map φ : K[X]→ K ′[X] yields an isomorphism of fields K[X]/(P )→
K ′[X]/(P ′) which extends K ∼= K ′. Since P is irreducible it follows that P = mα and similarly P ′ = mβ .
The previous result then shows that K(α) ∼= K[X]/(P ) ∼= K ′[X]/(P ′) ∼= K ′(β) as desired.

Example 109. For example X3 − 2 is irreducible over Q and so Q( 3
√

2) ∼= Q(ζ3
3
√

2) as fields.

4.3 Algebraically closed fields

Definition 110. 1. A field K is said to be algebraically closed if every algebraic element over K is in K.

2. An algebraic closure of a field K is an algebraically closed field which is algebraic over K.

Lemma 111. If every polynomial in K[X] has a root in K then K is algebraically closed.

Proof. Suppose α is algebraic over K. Let mα be its minimal polynomial. By assumption mα has a root in
K. Since mα is irreducible it follows that mα is linear and therefore α ∈ K as desired.

Theorem 112. Let K be any field.

1. There exists an algebraically closed field L containing K.

2. For any algebraically closed field L containing K the algebraic closure of K in L is an algebraic closure
of K.

Proof. (1): Done in class. See Dummit and Foote Proposition 30 on page 544. It uses the previous lemma.
(2): Let K be the algebraic closure of K in L. This is a field from a previous result and by definition it

is algebraic over K. Suppose now that α is algebraic over K. Then K(α)/K is algebraic and so K(α)/K is
also algebraic which implies that α is algebraic over K. Since L is algebraically closed we deduce that α ∈ L
and so by definition α is in the algebraic closure K of K in L.

Example 113. The field C is algebraically closed by the fundamental theorem of algebra which we’ll prove
later using Galois theory. Thus the algebraic closure Q of Q in C is an algebraic closure of Q.

Lecture 20
2015-02-27

Proposition 114. Let K be a field.

1. If i : K ↪→ L is an injection such that L/i(K) is algebraic then any field homomorphism K →M where
M is algebraically closed extends to a homomorphism L→M .

2. Any two algebraic closures of K are isomorphic as fields.
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Proof. (1): Let S be the collection of pairs (T, f) where L/T/K is a subextension and f : T → M is such
that f ◦ i is the given homomorphism K →M . We give the partial order on S by (T, f) ≤ (T ′, f ′) if T ⊂ T ′
and f ′ ◦ i = f . If T ⊂ S is an increasing chain then let T be the union of the fields in T . It’s clear that
K → M extends to T → M since every element of T is in some pair in T . Thus T has a maximal element
and Zorn’s lemma implies that S has a maximal element (L′, f ′).

To check that L′ = L suppose α ∈ L − L′. It suffices to extend f ′ to L′(α) → M because this would
contradict the maximality of L′. Let β be any root of f(P ′). Recall that we can find an isomorphism
L′(α) ∼= f(L′)(β) making the diagram commute:

L′(α) // f(L′)(β)

L′

OO

f ′ // f(L′)

OO

The result now follows because f(L′)(β) ⊂M .
(2): Let ij : K → Li, i = 1, 2, be two algebraic closures of K. From (1) there exist maps f : L1 → L2

such that f ◦ i1 = i2. Then L2 is a necessarily algebraic extension of f(L1) and since L1 is algebraically
closed and f must be an injection we deduce that L2 = f(L1) and so f is an isomorphism.

4.4 Composition of fields

Definition 115. If K1 and K2 are two subfields of a field L then the composite K1K2 is the smallest subfield
of L containing K1 and K2. We denote the composite of K(α) and K(β) as K(α, β).

Remark 10. If L1, L2 are subextensions of a big extension of K then L1L2 consists of all rational expressions
in elements of L1 and L2.

Proposition 116. Suppose L1, L2/K are two finite subextensions of some big field.

1. Then [L1L2 : K] ≤ [L1 : K][L2 : K] with equality if and only if a basis of L1/K stays independent over
L2.

2. [L1 : K] and [L2 : K] divide [L1L2 : K].

3. If [L1 : K] and [L2 : K] are coprime then [L1L2 : K] = [L1 : K][L2 : K].

Proof. (1): Let ui be a basis of L1/K and vj a basis of L2/K. Then L1 = K(u1, . . . , um) and L2 =
K(v1, . . . , vn). But then L1L2 = K(ui, vj) which is spanned by u1, . . . , um over L2. Thus [L1L2 : K] =
[L1L2 : L2][L2 : K] ≤ mn as desired with equality iff the spanning set is also a basis.

(2): Follows from the fact that L1 and L2 are subextensions of L1L2 and degree is multiplicative.
(3): From (2) we deduce that [L1 : K][L2 : K] = lcm([L1 : K], [L2 : K]) | [L1L2 : K] and from (1) we

deduce equality.

Example 117. [Q( 3
√

5) : Q] = 3 as 3
√

5 has minimal polynomial X3 − 5. Similarly [Q(ζ3
3
√

5) : Q] = 3.
However the composite extendion Q(ζ3,

3
√

5) does not have degree 9 over Q. Indeed, Q(ζ3,
3
√

5) = Q(ζ3)Q( 3
√

5)
is degree 6 = 2 · 3 over Q as 2 and 3 are coprime.

In the previous proposition part 1 this is because the basis 1, 3
√

5, 3
√

25 of Q( 3
√

5) over Q satisfies

1 · ζ2
3

3
√

25 +
3
√

5 · ζ3 3
√

5 +
3
√

25 · 1 = 0

over Q(ζ3
3
√

5).

Proposition 118. If [L1L2 : K] = [L1 : K][L2 : K] then L1 ∩ L2 = K. The converse is not true.
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Proof. Suppose [L1L2 : K] = [L1 : K][L2 : K]. From the previous proposition we know that [L1L2 :
L1 ∩L2] ≤ [L1 : L1 ∩L2][L2 : L1 ∩L2]. But [L1L2 : L1 ∩L2] = [L1L2 : L1][L1 : L1 ∩L2] and we deduce that
[L1L2 : L1] ≤ [L2 : L1 ∩ L2].

Now [L1L2 : K] = [L1L2 : L1][L1 : K] = [L1 : K][L2 : K] = [L1 : K][L2 : L1 ∩ L2][L1 ∩ L2 : K] and so
[L1L2 : L1] = [L2 : L1 ∩ L2][L1 ∩ L2 : K]. We also proved this is ≤ [L2 : L1 ∩ L2] and so [L1 ∩ L2 : K] ≤ 1.
Thus L1 ∩ L2 = K.

That the converse is not true follows from the previous example since Q( 3
√

5) ∩Q(ζ3
3
√

5) = Q.

4.5 Splitting fields and normal extensions

Definition 119. Let P ∈ K[X] be a polynomial. The splitting field of P is any field L/K such that P
splits as a product of linear terms over L but not so over any subextension of L. If the roots of P (X) are
α1, . . . , αn then the splitting field is K(α1, . . . , αn).

Example 120. 1. The splitting field of X3 − 5 is Q(ζ3,
3
√

5).

2. The splitting field of X2 − 5 is Q(
√

5).

3. The splitting field of X2 +X + 1 over F2 is a field with 4 elements.

4. If K = FracQ[[x]] and P (Y ) ∈ K[Y ] is Y 2−2x−1 then the splitting field, by definition, is K(±
√

1 + 2x).

However, the degree is not 2. In fact K(
√

1 + 2x) = K since
√

1 + 2x =
∑
n≥0

(
1/2
n

)
2nxn ∈ K.
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Proposition 121. Suppose P (X) has degree n and splitting field L. Then [L : K] ≤ n!.

Proof. Done in class. See Dummit and Foote Proposition 26 on page 538.

Proposition 122. Let P (X) ∈ K[X] be a polynomial. Suppose φ : K
∼=−→ K ′ and P ′ = φ(P ) ∈ K ′[X]. Let

L be a splitting field of P and L′ be a splitting field of P ′. Then there exists an isomorphism L ∼= L′ making
the diagram commutative:

L
∼= // L′

K

OO

∼= // K ′

OO

Proof. Done in class. See Dummit and Foote Theorem 27 on page 541.

This proposition has the following corollary.

Definition 123. An extension L/K is said to be normal if any irreducible polynomial P (X) ∈ K[X] that
has one root in L has all roots in L.

Example 124. 1. For any field K the extension K/K is normal.

2. C/R is normal.

3. Q( 3
√

5)/Q is not normal.

Lemma 125. Suppose L/K is a field extension and φ : L→ L is a field isomorphism such that φ|K = idK .
If P (X) ∈ K[X] has a root α ∈ L then φ(α) is another root of P (X).

Proof. Note that 0 = φ(0) = φ(P (α)) = P (φ(α)) as φ is the identity on the coefficients of P (X).
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Theorem 126. A finite extension L/K is normal if and only if L is the splitting field of some polynomial
in K[X].

Proof. Suppose L/K is normal. Note that the composite of two splitting fields in L is again a splitting field
in L. Therefore we may choose L/M/K the maximal subextension that is a splitting field over K, say of the
polynomial Q(X). If M = L then we are done. Otherwise let α ∈ L −M with minimal polynomial P (X)
over K. Then the roots α1 = α, . . . , αk of P (X) all lie in L. Note that M(α1, . . . , αn) ⊂ L is the splitting
field over K of the polynomial P (X)Q(X) which contradicts the choice of M .

Now suppose L = K(α1, . . . , αn) is the splitting field of P (X) ∈ K[X] with roots αi. Suppose Q(X) ∈
K[X] is an irreducible polynomial with root α ∈ L. Let M be a splitting field of P (X)Q(X) over L. Then
clearly L ⊂M . Let β ∈M by any other root of Q(X). We’d like to show that β ∈ L. Since Q is irreducible
we know there exists a field isomorphism φ : K(α)→ K(β) sending α to β and being the identity on K.

The field M is a splitting field for P (X)Q(X) over K but since M contains both K(α) and K(β),
M is the splitting field of P (X)Q(X) over K(α) and of P (X)Q(X) = φ(P (X)Q(X)) over K(β). The
previous proposition implies that we may extend φ to an isomorphism φ : M → M which restricts to
φ : K(α) → K(β). Let α1, . . . , αm be the roots of P (X), all in L. Then α ∈ L must be a rational (in fact
polynomial) expression in α1, . . . , αm. But the previous lemma implies that φ(αi) is again a root of P (X)
and so φ(α1), . . . , φ(αm) ∈ L. But then β = φ(α) ∈ L.

4.6 Separable extensions

Definition 127. A polynomial P (X) ∈ K[X] is said to be separable if it has no multiple root.

Example 128. X2 − Y ∈ F2(Y )[X] splits as (X −
√
Y )2 over the splitting field F2(

√
Y ) but is irreducible

over F2(Y ).

Proposition 129. Let K be any field. For P (X) =
∑n
i=0 aiX

i define P ′(X) =
∑n
i=1 iaiX

i−1.

1. (P +Q)′ = P ′ +Q′.

2. (PQ)′ = P ′Q+ PQ′.

3. A root α if P (X) is a multiple root if and only if P ′(α) = 0.

4. The polynomial P (X) is separable if and only if P and P ′ are coprime.

5. If P (X) is irreducible then P is separable unless P ′ = 0 in which case it is not separable.

Proof. (1): Trivial by hand.
(2): Using (1) it suffices to check it for monomials. But (aXmbXn)′ = ab(m+n)Xm+n−1 = ambXm−1Xn+

bnaXmXn−1.
(3): If P (X) = (X − α)2Q(X) then P ′(X) = (X − α)(Q′(X) + 2Q(X)).
(4): Let L be a splitting field of P (X) over K. If not separable then X − α | P, P ′. If P and P ′ are

coprime over K[X] then P (X)A(X) + P ′(X)B(X) = 1 for some polynomials A(X), B(X) ∈ K[X] which is
impossible since X − α - 1.

(5): If P ′ is not zero then the only way P and P ′ can be not coprime, given that P is irreducible, is if
P | P ′ which contradicts that degP > degP ′. If P ′ = 0 then every root of P is multiple.

Example 130. Xp + t is inseparable over Fp(t) but X2 +X + 1 is separable over F2.

Lemma 131. Let p be a prime and R any Fp-algebra. Then φ(x) = xp is a homomorphism φ : R → R. If
R is reduced (e.g., if it is a field) then φ is injective.

Proof. Done in class. See Dummit and Foote Proposition 35 on page 548.

34



Lecture 22
2015-03-06

Definition 132. The Fp-algebra R is said to be perfect if φ : R→ R is surjective.

Proposition 133. Let K be a field and P (X) ∈ K[X] be irreducible.

1. If K has characteristic 0 then P is separable.

2. If K has characteristic p a prime and P is not separable then there exists a separable polynomial

Q(X) ∈ K[X] and k 6= 1 such that P (X) = Q(Xpk).

Proof. (1): Note that degP ′ = degP − 1 since if an 6= 0 then nan 6= 0 in characteristic 0.
(2): It suffices to show that if P is inseparable then P (X) = Q(Xp) for some Q. Since p degQ = degP

after finitely many steps the procedure must stop, i.e., we reach a separable polynomial. The previous
proposition implies that P ′(X) = 0 so

∑
iaiX

i−1 = 0 so iai = 0 for all i. This implies that ai = 0 whenever
p - i and taking Q(X) =

∑
apiX

i works.

Definition 134. A field K is said to be perfect if either K has characteristic 0 or if it has characteristic p
and it is perfect as an Fp-algebra. An algebraic extension L/K is said to be separable if every element of
L has separable minimal polynomial.

Proposition 135. Suppose K is perfect. Then every algebraic extension is separable.

Proof. Let α ∈ L with minimal polynomial P (X). Since P is irreducible it is separable in characteristic 0.

Suppose K has characteristic p. Then there exists a separable polynomial Q(X) such that P (X) = Q(Xpk).

Let Q(X) =
∑
qiX

i. Since K is perfect there exist ai ∈ K such that qi = ap
k

i . Then Q(Xpk) =∑
qiX

ipk =
∑

(aiX
i)p

k

= R(X)p
k

where R(X) =
∑
aiX

i. Thus, however, contradicts the fact that

P (X) = R(X)p
k

is irreducible.

To study separable extensions more deeply we need the following criterion.

Theorem 136. Let L/K be a finite extension of degree n and φ : K →M a fixed injection field embedding
(i.e., injection). Let E(L, φ : K ↪→M) = {ψ : L ↪→M |ψ|K = φ}.

1. |E(L, φ : K →M)| ≤ [L : K].

2. If L/K is inseparable then |E(L, φ : K →M)| < [L : K].

3. If L = K(α1, . . . , αm) such that αk is separable over K(α1, . . . , αk−1) for all k. Then there exists a
finite extension M ′ of M such that for any field N containing M ′, |E(L, φ : K → N)| = [L : K].

Before proving the theorem I give an application.

Proposition 137. 1. If α1, . . . , αm are such that for all k, αk is separable over K(α1, . . . , αk−1), then
K(α1, . . . , αm) is separable over K.

2. If L/M and M/K are separable (not necessarily finite) then L/K is separable.

Proof. (1): Part (3) of Theorem 136 implies that |E(L,K ↪→ K)| = [L : K]. Part (2) of the theorem then
implies that L/K is separable.

(2): Suppose α ∈ L. Then α is the root of a separable polynomial Xn + bn−1X
n−1 + · · ·+ b1X + b0 = 0

where bi ∈M . Since M/K is separable each bi is separable and so α is separable over K(b0, . . . , bn−1) which,
in turn, is finite over K. Note that if bk is separable over K then it is separable over K(b0, . . . , bk−1) since its
minimal polynomial over the finite extension divides the minimal polynomial over K. Thus K(b0, . . . , bn, α)
is separable by part (1). We conclude that α is separable over K.
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Proof of Theorem 136. First, let’s show parts (1) and (2) inequality in the case of L = K(α). Let
P (X) be the minimal polynomial of α over K, of degree d. Then K(α) over K has basis 1, α, . . . , αd−1 so
ψ ∈ E(K(α), φ : K ↪→ M) is uniquely determined by its value ψ(α). But 0 = ψ(P (α)) = ψ(P )(ψ(α)) =
φ(P )(ψ(α)) = 0 and so ψ(α) is a root of the polynomial φ(P ) of degree d. Thus ψ(α) can take at most
d values so |E(K(α), φ)| ≤ d = [K(α) : K] as desired. If P (X) is inseparable then the number of roots of
P (X), and thus also the number of values of ψ(α), is < degP (X) and so |E(K(α),K ↪→M)| < [K(α) : K].

(1): By induction on [L : K]. The base case L = K is trivial. Suppose α ∈ L − K. Note that if
ψ : L→M is in E(L,K ↪→M) then ψ|K(α) : K(α)→M is in E(K(α),K ↪→M). In fact we get a partition

E(L,K ↪→M) =
⊔

η∈E(K(α),K↪→M)

E(L, η : K(α) ↪→M)

which is the main combinatorial tool in the proof.
From the case K(α)/K we know that |E(K(α),K ↪→M)| ≤ [K(α) : K] and from the inductive hypothesis

(since [L : K(α)] < [L : K]) we know that |E(L, η : K(α) ↪→M)| ≤ [L : K(α)]. Thus

|E(L, φ)| =
∑

η∈E(K(α),K↪→M)

|E(L, η : K(α) ↪→M)|

≤
∑

η∈E(K(α),K↪→M)

[L : K(α)]

= [L : K(α)]|E(K(α),K ↪→M)|
≤ [L : K(α)][K(α) : K]

= [L : K]

(2): If L/K is inseparable, for some α ∈ L the extension K(α)/K is inseparable. Thus |E(K(α),K ↪→
M)| < [K(α) : K] and in the above formula we get strict inequality.
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(3): Again, let’s first do it in the case when L = K(α). Let P (X) be the minimal polynomial of α over K.
Let N be any extension of M containing the splitting field M ′ over M of the polynomial φ(P (X)) ∈M [X].
Let α1, . . . , αd ∈ N be the roots of this splitting field, all distinct as P (X) is separable. We know that any
ψ ∈ E(K(α),K ↪→ N) is uniquely defined by ψ(α) which has to be a root of φ(P (X)). Any of the d roots
αi yields ψi : K(α) ↪→ N and so we get equality |E(K(α),K ↪→ N)| = [K(α) : K].

We proceed by induction on the number of αi in L. For simplicity write Li = K(α1, . . . , αi). Suppose
|E(Li,K ↪→ Mi)| = [Li : K] for some Mi/M finite. Let Mi+1 be the splitting field over Mi of φ(Pi+1(X))
where Pi+1(X) is the minimal polynomial over Li of αi+1. Then |E(Li+1, Li ↪→ Mi+1) = [Li+1 : Li].
Moreover, since Mi+1 contains Mi the inductive hypothesis gives |E(Li,K ↪→Mi+1)| = [Li : K]. Finally the
boxed combinatorial formula yields |E(Li+1,K ↪→Mi+1)| = [Li+1 : Li][Li : K] = [Li+1 : K].

Definition 138. If L/K is any field extension let Aut(L/K) = {f : L
∼=−→ L|f |K = idK}.

The following application of Theorem 136 is useful in Galois theory.

Proposition 139. Let L/K.

1. If α ∈ L is algebraic over K with minimal polynomial P (X) and φ ∈ Aut(L/K) then φ(α) is also a
root of P (X).

2. If L/K is finite then |Aut(L/K)| ≤ [L : K].
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3. If L/K is finite separable and normal then |Aut(L/K)| = [L : K].

4. If L/K is finite separable and normal and L/M/K is any subextension then the number of embeddings
M ↪→ L restricting to the identity on K is [M : K].

Proof. (1): This we already proved in the proof of Theorem 136.
(2): Note that Aut(L/K) = E(L,K ↪→ L) where K ↪→ L is a fixed inclusion. Then the statement follows

from the theorem.
(3): Follows from (4).
(4): The set of such embeddings is E(M,K ↪→ L). Suppose M = K(α). Let P (X) be the mini-

mal polynomial of α over K. Since L/K is normal, P (X) splits over L and so the theorem implies that
|E(K(α),K ↪→ L)| = [K(α) : K]. Thereafter the result follows by induction as in the theorem, part 3.

Example 140. 1. Let ζ = ζ3 and u = 3
√

5. Then ζ has minimal polynomial X2 + X + 1 and u has
minimal polynomial X3 − 5 over Q. Both are separable and so Theorem 136 implies that L = Q(ζ, u)
is separable over Q. The previous proposition implies that Aut(L/Q) has [L : Q] = 6 elements. We
know that every f ∈ Aut(L/Q) takes ζ to either ζ or ζ2 and u to one of u, ζu, ζ2u (α goes to a root of
its minimal polynomial).

For i ∈ {1, 2}, j ∈ {0, 1, 2} let fi,j be the unique homomorphism L → L taking ζ 7→ ζi and u 7→ ζju.
Since L/Q has basis 1, u, u2, ζ, ζu, ζu2 it follows that fi,j is uniquely defined by these two conditions.
All 6 choices fi,j are clearly distinct and so Aut(L/Q) = {fi,j}.

2. Consider Q(u)/Q. It is finite and separable but not normal. Any f ∈ Aut(Q(u)/Q) takes u to one of
u, ζu, ζu2. At the same time f(u) ∈ Q(u) ⊂ R and so f(u) = u is the only choice. Finally, a basis of
Q(u)/Q is 1, u, u2 and so f = id. Thus Aut(Q(u)/Q) = {id}.

Proposition 141. If L/K is finite separable then L = K(α) for some α ∈ L.

Example 142. Continuing the previous example, I claim that L = Q(ζ, u) = Q(ζ + u). Let x = ζ + u.
Certainly Q(ζ, u) ⊃ Q(x). Note that x − ζ = u so (x − ζ)3 = u3 = 5. since ζ2 = −ζ − 1 and ζ3 = 1 we
deduce

ζ =
x3 − 3x− 6

3x2 + 3x
∈ Q(x)

and also u = x− ζ ∈ Q(x). Thus Q(ζ, u) ⊂ Q(x) and equality follows.

Proof of Proposition 141. If K is a finite field then so is L. We’ll see in the next section that L× is a
cyclic group, generated by some g in which case L = K(g).
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Suppose that K is infinite. Since L/K is finite we may write L = K(α1, . . . , αn) with minimal n. We’d like
to show that n = 1. Suppose n > 1. By induction it suffices to check that if K(α, β)/K is separable then
K(α, β) = K(γ) for some γ.

For c ∈ K the field K(α+ cβ) ⊂ K(α, β) is separable over K. If K(α+ cβ) ( K(α, β) then [K(α+ cβ) :
K] < [K(α, β) : K]. Fix an embedding K ↪→ K into an algebraic closure. The theorem implies there are
[K(α, β) : K] extensions to K(α, β) ↪→ K and [K(α + cβ) : K] extensions to K(α + cβ) ↪→ K. There are
more of the former than the latter which implies that for two distinct embeddings φ, ψ : K(α, β) ↪→ K, they
restrict to the same embeddings K(α + cβ) ↪→ K. But both extensions φ and ψ extend K ↪→ K and so
φ(c) = ψ(c) = c which implies that φ(α) + cφ(β) = φ(α+ cβ) = ψ(α+ cβ) = ψ(α) + cψ(β).

Choose c 6= 0. Then φ(α) = ψ(α) iff φ(β) = ψ(β) in which case φ = ψ on K(α, β). Thus c =
(φ(α) − ψ(α))/(ψ(β) − φ(β)). However, over all distinct embeddings φ, ψ : K(α, β) ↪→ K there are finitely
many such expressions. Since K is infinite we may choose c not equal to any such value in which case we
get a contradiction.
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Example 143. 1. Q(
√

2,
√

3) = Q(
√

2 +
√

3).

2. Q(ζ3,
3
√

5) = Q(ζ3 + 3
√

5).

Proposition 144. Suppose L/K is an algebraic extension of fields such that K is an imperfect field of
characteristic p, a prime. Let M = {x ∈ L|K(x)/K is separable}.

1. M is a field called the separable closure of K in L.

2. M/K is separable.

3. L/M is purely inseparable, i.e., every element of L not in M has inseparable minimal polynomial.

4. If L/K is normal then M/K is also normal.

Proof. (1): If α has separable minimal polynomial P (X) then 1/α has necessarily separable minimal poly-
nomial XdegP (X)P (1/X). If α, β are separable then K(α, β)/K is separable and therefore α + β, αβ are
both separable.

(2): By definition.
(3): If α ∈ L is separable over M then M(α) is separable over M which, in turn, is separable over K.

Thus M(α) is separable over K.
(4): Suppose P (X) ∈ K[X] is irreducible with a root α ∈ M . Then P (X) has all roots in L. At the

same time it is the minimal polynomial of α ∈ M so it is separable which implies that all the other roots
are in fact in M .

Remark 11. One can also show that if M is the separable closure of K in L then

1. If L/K is finite then [L : M ] is a power of p. (One calls [L : M ] the inseparable degree of L/K and
[M : K] the separable degree.)

2. In fact, the minimal polynomial of every x ∈ L over M is of the form Xpk − a.

4.7 Finite fields

Proposition 145. Let p be a prime and K a field with pn elements.

1. The splitting field of Xpn −X over Fp has pn elements.

2. The field K is perfect.

3. The field K is the splitting field of Xpn −X over Fp.

4. All finite field with pn elements are isomorphic.

5. The group K× is cyclic.

The (unique up to isomorphism) finite field with pn elements is denoted Fpn .

Proof. (1): If α and β are roots of P (X) = Xpn−X then (α+β)p
n

= αp
n

+βp
n

= α+β is again such a root
and (αβ)p

n

= αp
n

βp
n

= αβ is a root. Moreover P ′(X) = −1 so P is separable. Thus P (X) has pn distinct
roots and let F be the set of roots. It is stable under addition, multiplication and also clearly inverses so F
is a field with pn elements.

(2): φ : K → K is an injection of finite sets so it is also surjective.
(3): If α ∈ K − 0 then α is an element of the finite group K× with pn− 1 elements. Thus αp

n−1 = 1 and
so α is a root of P (X). Thus all of K consists of roots of P (X).

(4): Follows from uniqueness of splitting fields.
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(5): Thr group K× is finite abelian so it is of the form Z/n1Z × · · · × Z/nrZ with n1 | . . . | nr. Pick
g ∈ K× to be the identity in Z/nrZ. Note that every h ∈ K× visibly has order dividing nr (as ni | nr for
all i). Thus hnr = 1 where nr | pn − 1. This implies that every element h ∈ K× is a root of Xnr − 1 which
has at most nr | pn − 1 roots. We deduce that nr = pn − 1 and so K× = 〈g〉 as desired.

Proposition 146. Let p be a prime and n ≥ 2. There exists an irreducible polynomial P (X) ∈ Fp[X] of
degree n and Fpn ∼= Fp[X]/(P (X)).

Proof. Let g ∈ Fpn (which we know to exist) a generator of F×pn . Let P (X) be the minimal polynomial of g
over Fp, of degree m. Then Fpn = Fp(g) ∼= Fp[X]/(P (X)) has degree n = degP (X) over Fp.

Corollary 147. Let p be a prime. Denote Pd the set of irreducible monic polynomials of degree d in Fp[X].

1. Xpn −X is the product of all polynomials in Pd as d | n.

2. pn =
∑
d|n d|Pd|.

Proof. (1): If P is an irreducible factor of Xpn − X of degree d then the splitting field Fpd of P (X) is a

subfield of the splitting field Fpn of Xpn −X and so d | n. Since Xpn −X is separable each irreducible factor
appears once. Finally, suppose P (X) is an irreducible polynomial of degree d | n. If α is a (nonzero) root of

P (X) then α ∈ Fpd and so αp
d−1 = 1. Since d | n we have pd− 1 | pn− 1 and so α is also a root of Xpn −X.

This is true for every root of P (X) and so P | Xpn −X as desired.
(2): Take degrees in (1).

Proposition 148 (Möbius inversion). Define µ : Z≥1 → {−1, 1} by µ(n) = 0 if n is not square free
and µ(n) = (−1)k if n is a product of k distinct primes. If f, g : Z≥1 → C are functions such that
f(n) =

∑
d|n g(d) for all n then

g(n) =
∑
d|n

µ
(n
d

)
f(d)

Proof. Let S = {f : Z≥1 → C} which is an abelian group with respect to addition. Define the binary
operation ∗ on S by (f ∗ g)(n) =

∑
d|n f(d)g(n/d). It’s easy to check that ∗ is associative and distributive

with respect to addition. Let e ∈ S such that e(1) = 1 and e(n) = 0 for n > 1. Then clearly f ∗e = e∗f = f .
The set S with +, ∗ and unit e is a commutative ring.

If u = 1 is the constant function in S then u ∗ µ = µ ∗ u = e. The condition in the problem is that
f = u ∗ g. Then f ∗ µ = g as desired.

Corollary 149. There are 1
n

∑
d|n µ(n/d)pd irreducible polynomials of degree n in Fp[X]. In particular the

probability that a randomly chosen polynomial in Fp[X] of degree n is irreducible is at least 1
pn −

log2(n)

pn/2+1 .

Remark 12. This is useful in computer science. The way to construct Fpn is to choose an irreducible
polynomial in Fp[X] of degree n and then store Fp[X]/(P (X)) in the computer. Choosing such P can
be done randomly. Choosing randomly polynomials, if one had an irreducibility criterion, would yield an
irreducible polynomial in expected time n. I did this in detail in class.
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4.8 Cyclotomic fields

Definition 150. The n-th cyclotomic field is the splitting field of Xn − 1 over Q. Let µn be the n-th roots
of unity. Then µn is cyclic, generated by e2πi/n. A primitive n-th root of unity is any generator of µn.

Proposition 151. Let ζ ∈ µn be a primitive root.

1. The set of primitive roots is Ψn = {ζk|(k, n) = 1} and has order ϕ(n) = |(Z/nZ)×|.

2. The n-th cyclotomic polynomial defined as

Φn(X) =
∏
ζ∈Ψn

(X − ζ)

is in Z[X] and has degree ϕ(n).

3. Xn − 1 =
∏
d|n Φd(X).

4. Φn(X) =
∏
d|n(Xd − 1)µ(n/d).

Proof. (1): We know that the order of ζk is n/(k, n) and the result is immediate.
(2): We see that the coefficients of Φn(X) are algebraic integers. Moreover, from (4) it follows that it

has rational coefficients. Since Z is integrally closed we deduce that it has integer coefficients.
(3): It suffices to show that every n-th root of unity appears exactly once in some Φd(X). Suppose ζ ∈ µn

has order d | n. Then ζ is a root of Φd(X). Moreover, every root of Φd(X) is an n-th root and must have
order d. Thus Φd are all coprime and so each n-th root appears exactly once in the RHS.

(4): Follows from Möbius inversion applied to log(Xn − 1) =
∑
d|n log Φd(X).

Theorem 152. For each n ≥ 2 the polynomial Φn(X) is irreducible over Q and thus [Q(ζn) : Q] = ϕ(n).

Proof. Done in class. See Dummit and Foote Theorem 41 on page 554.
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5 Galois theory

5.1 Automorphisms

Definition 153. An algebraic extension L/K is said to be Galois if L/K is both separable and normal. In
that case we denote the group Aut(L/K) by Gal(L/K).

Remark 13. 1. We’ve seen that if L/K is finite Galois then |Gal(L/K)| = [L : K].

2. The main tool in computing Galois groups is the observation, used before, that if σ ∈ Aut(L/K) and
α ∈ L is algebraic over K then σ(α) is another root of the minimal polynomial of α over K.

Example 154. I worked these out in detail in class.

1. Aut(Q(
√

5)/Q) ∼= Z/2Z. The automorphisms are id and a+ b
√

5 7→ a− b
√

5.

2. Aut(Q( 3
√

5)/Q) = 1.

3. From homework, Aut(R/Q) = 1, but the extension is not algebraic.

4. From homework, Aut(K(t)/K) ∼= PGL(2,K), but the extension is not algebraic.
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5. Consider the extension Fpn/Fp. It is separable as Fp is perfect and normal, being the splitting field
of Xpn . Recall that Frobenius φ(x) = xp is an automorphism. Fermat’s little theorem implies that
φ|Fp = id and so φ ∈ Gal(Fpn/Fp). Since Fpn is the splitting field of Xpn − X = φn − id we deduce
that φn = id on Fpn and φr 6= id for 0 < r < n. Thus Gal(Fpn/Fp) = {id, φ, φ2, . . . , φn−1} which, as a
group, is ∼= Z/nZ by comparing cardinalities as |Gal(Fpn/Fp)| = [Fpn : Fp] = n.

6. C/R is Galois with Galois group ∼= Z/2Z consisting of the identity and complex conjugation.

7. If [L : K] = 2 then L is the splitting field over K of a quadratic and therefor is normal. If K has
characteristic not 2 then the extension L/K is always separable and therefore Galois. In characteristic
2, e.g., F2(

√
x)/F2(x) is quadratic, normal but not separable. If separable then Gal(L/K) ∼= Z/2Z as

this is the only group of cardinality 2.

8. For example K(x)/K(x + 1/x) is degree 2. Indeed, if y = x + 1/x then x2 − xy + 1 = 0. It is Galois
in characterstic not 2.

9. The extension Q(ζn)/Q is Galois, being the splitting field of Xn−1. Its Galois group is Gal(Q(ζn)/Q) ∼=
(Z/nZ)×. To k ∈ (Z/nZ)× one get the automorphism σk taking ζn to ζkn. Done in class, see Dummit
and Foote Theorem 26 on page 596.

10. Let p > 2 be a prime. Then Q(ζp,
p
√

2) is Galois over Q. Any automorphism must take ζp to ζap for

some 0 < a < p and p
√

2 to ζbp
p
√

2 for some 0 ≤ b < p. Define m(a, b) =

(
a b

1

)
∈ GL(2,Fp) and

σm(a,b) as the automorphism taking ζp to ζap and p
√

2 to ζbp
p
√

2. Since a basis of Q(ζp,
p
√

2) over Q is

given by ζip
p
√

2j for 0 ≤ i ≤ p− 2 and 0 ≤ j ≤ p− 1, σm(a,b) is uniquely defined by a and b. This yields
a homomorphism. Note that

σm(a,b) ◦ σm(a′,b′) = σm(a,b)m(a′,b′)

and σm(1,0) = id. Thus σm(a,b) and σm(a,b)−1 = σm(a−1,−a−1b) are inverses to each other and so σm(a,b)

is an automorphism.

Finally, {σm(a,b)} ⊂ Gal(Q(ζp,
p
√

2)/Q) is a subgroup of order p(p − 1) which is also the order of the
extension and thus of the Galois group. We deduce that

Gal(Q(ζp,
p
√

2)/Q) ∼= {
(
a b

1

)
∈ GL(2,Fp)} ∼= Z/pZ o (Z/pZ)×

11. When p = 3 we get Gal(Q(ζ3,
3
√

2)/Q) ∼= S3 with σm(2,0) being a transposition and σm(0,1) being a
3-cycle.

12. Q(i, 4
√

2) is Galois over Q being the splitting field of X4 − 2. The Galois group is ∼= D8 taking F to
complex conjugation and R to the automorphism which takes i to i and 4

√
2 to i 4

√
2.
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5.2 The main theorem of Galois theory

Definition 155. Suppose H ⊂ Aut(L/K) is a subgroup. Define LH = {x ∈ L|σ(x) = x, ∀h ∈ H}.

The following proposition is immediate.

Proposition 156. Let L/K be an extension.

1. If H ⊂ Aut(L/K) then LH is a field, called the fixed field of H.

2. If H1 ⊂ H2 ⊂ Aut(L/K) then LH1 ⊃ LH2 .
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3. If K ⊂M1 ⊂M2 ⊂ L then Aut(L/M1) ⊂ Aut(L/M2).

The goal of this section is to prove the following two main theorems of Galois theory:

Theorem 157 (Main theorem A). Let L/K be a finite Galois extension.

1. If L/M/K is a subextension then L/M is Galois.

2. LGal(L/M) = M .

3. If H ⊂ Gal(L/K) is a subgroup then H = Gal(L/LH).

4. There is a bijection between subgroups H ⊂ Gal(L/K) and subextensions L/M/K sending H to LH

and M to Gal(L/M).

Theorem 158 (Main theorem B). Let L/K be a finite Galois extension.

1. If σ ∈ Gal(L/K) and H is a subgroup of Gal(L/K) then σ(LH) = LσHσ
−1

.

2. A subextension M of L/K is Galois over K iff σ(M) = M for all σ ∈ Gal(L/K).

3. In the bijection above H is normal if and only if LH/K is Galois as well. Equivalently, M/K is Galois
iff Gal(L/M) is normal in Gal(L/K).

4. In this case Gal(M/K) ∼= Gal(L/K)/Gal(L/M) or equivalently Gal(LH/K) ∼= Gal(L/K)/H.

5.2.1 Examples

Example 159. Examples for Theorem A.

1. Consider Gal(Q(ζn)/Q) ∼= (Z/nZ)× containing the subgroup H = {−1, 1}. What is Q(ζn)H? The
group H fixes ζn + ζ−1

n and so Q(ζn + ζ−1
n ) ⊂ Q(ζn)H . The main theorem then tells us that [Q(ζn) :

Q(ζn)H ] = [Q(ζn) : Q(ζn + ζ−1
n )] = 2 and so Q(ζn)H = Q(ζn + ζ−1

n ) = Q(cos(2π/n)) ⊂ R. It is the
largest real subfield of Q(ζn).

2. We’ve seen that if K = Q(ζ3,
3
√

2) then Gal(K/Q) ∼= S3. This group has the following subgroups: S3,
1, A3 and 3 transpositions. A3 is generated by σm(0,1) while the three transpositions are σm(2,b) for
0 ≤ b ≤ 2. What are the corresponding subextensions?

(a) S3: The subextension is LS3 = Q.

(b) A3: Note that ζ3 is fixed by σm(0,1) and so Q(ζ3) ⊂ LA3 . Then [L : Q(ζ3)] = 3 = |A3| = [L : LA3 ]
and so LA3 = Q(ζ3).

(c) Transposition σm(2,b). Note that ζb3
3
√

2 is fixed by σm(2,b) and so Q(ζb3
3
√

2) ⊂ L〈σm(2,b)〉. A
comparison of degree, as in the case of A3, yields equality.

In class I also did one of these computations by brute force.
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Example 160. Examples for Theorem B.

1. Since Gal(Q(ζn)/Q) is abelian it follows that any subgroup is normal and therefore any subextension
is Galois over Q.

42



2. We know from last semester’s homework that the normal subgroups of {
(
a b

1

)
∈ GL(2,Fp)} are all

of the form Hc = {
(
a b

1

)
|a ∈ 〈c〉 ⊂ F×p }. Since H1 ⊂ Hc we conclude that every subextension of

K = Q(ζp,
p
√

2) which is Galois over Q, being of the form KHc , must be contained in KH1 . Note
that ζp is fixed by H1 and so Q(ζp) ⊂ KH1 . At the same time comparing degrees we deduce that
Q(ζp) = KH1 . We deduce that every subextension of K Galois over Q is in fact contained in Q(ζp),
all of whose subextensions are Galois over Q.

5.2.2 Two technical results

The main tools in proving the main theorems of Galois theory are combinatorics and linear algebra.

Proposition 161 (Linear independence of characters). Suppose G is a finite group and L is a field. Let
χ1, . . . , χn : G → L× are distinct characters, i.e., group homomorphisms. Then χ1, . . . , χn are linearly
independent over L, i.e., if

∑
aiχi(g) = 0 for all g then a1 = . . . = an = 0.

Proof. Done in class. See Dummit and Foote Theorem 7 on page 569.

This uses combinatorics, specifically the fact that minimal linear dependences exist. This is in the same
flavor as the proof of the fact that vector spaces have bases.

Proposition 162. Let L/K be any extension and H ⊂ Aut(L/K) be any finite subgroup. Then |H| = [L :
LH ].

Proof. Let H = {σ1, . . . , σn} and {ui} a basis for L over LH .
Suppose that |H| > [L : LH ]. Then L has basis u1, . . . , um over LH with m < n. Then linear algebra

yields a nontrivial solution to the system 
∑n
i=1 σi(u1)xi = 0

...∑n
i=1 σi(um)xi = 0

with xi ∈ L. For every α ∈ LH have σi(α) = α so
∑
i σi(αuj)xi = 0 for all j. Any u ∈ L can be written

as u
∑
ajuj with aj ∈ LH and so

∑
i σi(u)xi = 0 for all u. But then σi : L → L multiplicative are linearly

dependent over L which contradicts the previous proposition.
Therefore |H| ≤ [L : LH ]. Suppose that in fact we can find linearly independent (over LH) vectors

u1, . . . , um in L. I.e., we are assuming that |H| < [L : LH ].
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The system 
∑m
i=1 σ1(ui)xi = 0

...∑m
i=1 σn(ui)xi = 0

has a nontrivial solution with xi ∈ L. Among all these solutions we can choose one with the smallest number
of nonzero xi and, reordering, we may assume that x1, . . . , xr are nonzero. Dividing by xr we may further
assume that xr = 1. We get 

σ1(u1)x1 + · · ·+ σ1(ur−1)xr−1 + σ1(ur) = 0
...

σn(u1)x1 + · · ·+ σn(ur−1)xr−1 + σn(ur) = 0
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If x1, . . . , xr−1 ∈ LH then take the equation for σ1 = 1 ∈ H, namely, u1x1 + · · ·+ urxr = 0. This would be
a linear dependence over LH contradicting the choice of ui. Let’s assume that x1 /∈ LH . This implies there
exists σ ∈ H such that σ(x1) 6= x1. For each i we have∑

j

σσi(uj)σ(xj) = σ(
∑
j

σi(uj)xj) = 0

Since H is a group multiplication by σ permuted H and so we deduce that for each i (writing σi instead of
σσi), ∑

j

σi(uj)σ(xj) = 0

from which we subtract ∑
j

σi(uj)xj = 0

But xr = 1 so σ(xr) = xr so we obtain

r−1∑
j=1

σi(uj)(xj − σ(xj)) = 0

which contradicts the minimality of r.

5.2.3 The proof of the main theorems

Proof of Main Theorem A. (1): Since L/K is separable so is L/M . If L/K is normal and finite it is
the splitting field over K of a separable polynomial in K[X]. L is then also the splitting field of the same
polynomial but now over M . Thus L is normal over M .

(2): By definition M ⊂ LGal(L/M) and we know that |Gal(L/M)| = [L : M ]. But [L : LGal(L/M)] =
|Gal(L/M)| and so we deduce that M = LGal(L/M).

(3): By definition H fixes LH so H ⊂ Gal(L/LH). The two groups have equal orders but the proposition
and so they are the same.

(4): The maps M 7→ Gal(L/M) and H 7→ LH are mutual inverses by (2) and (3) and therefore yield
bijections between subextensions and subgroups of the Galois group.

Proof of Main Theorem B. (1): Note that x ∈ LσHσ−1

iff σhσ−1(x) = x for all h ∈ H iff h(σ−1(x)) =
σ−1(x) for all h ∈ H, iff σ−1x ∈ LH iff x ∈ σ(LH).

(2): Note that M/K is separable as L/K is. If M/K is normal and α ∈ M let P be the minimal
polynomial of α over K. Normality implies that all roots of P are in M . But also σ(α) is a root of P and
therefore σ(M) ⊂M . Comparing dimensions over K we deduce that σ(M) = M for all σ ∈ Gal(L/K).

Suppose M/K is not normal. Then there exists an irreducible P ∈ K[X] with one root α ∈ M and
another root β /∈ M . Necessarily β ∈ L as L/K is normal. We may extend the identity on K to an

isomorphism K(α)
∼=−→ K(β) sending α to β. Since L is the splitting field over K of a polynomial in K[X]

and L contains both α and β we may extend the isomorphism K(α)→ K(β) to an isomorphism σ : L→ L.
Since σ|K = id we get that σ ∈ Gal(L/K) and σ(α) = β. But α ∈M while β = σ(α) /∈M .

(3): By (2) LH/K is Galois iff σ(LH) = LH for all σ ∈ Gal(L/K). (1) then yields that LH = LσHσ
−1

.
Main Theorem A then shows that H = σHσ−1. These are all equivalences so LH/K is Galois iff H is normal
in Gal(L/K). Taking H = Gal(L/M) yields the equivalent statement.

(4): If M/K is Galois, part (2) shows that for σ ∈ Gal(L/K) we get σ : M →M is also an automorphism.
So σ 7→ σ|M yields a homomorphism Φ : Gal(L/K) → Gal(M/K). Its kernel is, by definition, Gal(L/M).
Thus Gal(L/K)/Gal(L/M) ∼= Im Φ ⊂ Gal(M/K). Comparing orders of groups we deduce that Im Φ =
Gal(M/K) as desired.
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5.3 Galois groups of composite fields

Proposition 163. Suppose L,L′/K are extensions such that L/K is finite Galois.

1. Then LL′/L′ is Galois and Gal(LL′/L′) ∼= Gal(L/L ∩ L′).

2. If L′/K is finite then [LL′ : K] = [L : K][L′ : K]/[L ∩ L′ : K].

Proof. Done in class. See Dummit and Foote Proposition 19 on page 591.

Proposition 164. Suppose L,L′/K are finite Galois extensions.

1. Then LL′/K and L ∩ L′/K are Galois.

2.
Gal(LL′/K) ∼= {(σ, τ) ∈ Gal(L/K)×Gal(L′/K)|σ|L∩L′ = τ |L∩L′}

3. If L ∩ L′ = K then Gal(LL′/K) ∼= Gal(L/K)×Gal(L′/K).

Proof. Done in class. See Dummit and Foote Proposition 21 on page 592.

Example 165. FpmFpn = Fp[m,n] . The proposition then says that Z/[m,n]Z ∼= {(a, b) ∈ Z/mZ×Z/nZ|a ≡ b
(mod (m,n))} which follows from the Chinese Remainder Theorem.

Example 166. Gal(Q(ζn,
n
√

2, n
√

3)/Q) ∼= {
((

a b
1

)
,

(
a′ b′

1

))
|a = a′ ∈ (Z/nZ)×, b, b′ ∈ Z/nZ}.

5.4 Solvability of polynomials and Galois groups

Definition 167. We say that a polynomial P (X) ∈ K[X] is solvable by radicals if its roots can be ex-
pressed using n

√
· radicals. Equivalently if the splitting field of P over K is contained in a field of the form

K( n1
√
a1, . . . , nk

√
ak) where ai ∈ K( n1

√
a1, . . . , ni−1

√
ai−1) for each i.

Example 168. 1. Quadratics, cubics and quartics are all solvable by radicals.

2. Xn − a is solvable by radicals.

3. X6 − 6X4 − 12X2 − 12 = (X2 − 2)3 − 4 is solvable by radicals over Q.

4. Any P (X) over a finite field is solvable by radicals. Indeed, elements of finite fields are all roots of
unity.

The main goal of this section is the following result.

Theorem 169. Let K be a field of characteristic 0 and P (X) = Xn + an−1X
n−1 + · · ·+ a0.

1. If a0, . . . , an−1 ∈ K then P is solvable by radicals if and only if its splitting field L/K has solvable
Galois group Gal(L/K).

2. If a0, . . . , an−1 are formal variables and P (X) ∈ K(a0, . . . , an−1)[X] then P (X) is not solvable by
radicals when n ≥ 5.

Remark 14. In part (2) we know solvability by radicals when n ≤ 4 due to the quadratic formula, Cardano’s
formula and a similar formula for quartics.

Example 170. We know that Xn − 2 is solvable by radicals. Its Galois group is Z/nZ o (Z/nZ)× which
has as normal subgroup Z/nZ o 1 and therefore is solvable.
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Proposition 171. Suppose K has characteristic not dividing n. Then L/K is Galois with cyclic Galois
group of order | n iff L = K( n

√
a) for some a ∈ K.

Proof. Done in class. See Dummit and Foote Propositions 36 and 37 on pages 625-626.

Proof of Theorem 169. Done in class. See Dummit and Foote Theorem 39 on page 628. We used some-
thing we’ll prove soon namely that in part (2) the Galois group is Sn which is not solvable when n ≥ 5.

Example 172. 1. Gal(Q(ζn)/Q) is cyclic so solvable.

2. Gal(Fpn/Fp) is cyclic and so solvable. To see directly note that Fpn is the splitting field of Xpn−1 − 1.

5.5 Galois groups of polynomials and symmetric polynomials

Definition 173. Let P (X) ∈ K[X] be a separable polynomial. The Galois group Gal(P ) of P is the Galois
group over K of the splitting field of P .

Remark 15. The previous section shows the importance of studying Galois groups of polynomials.

Definition 174. For variables x1, . . . , xn define the k-th symmetric polynomial

sk =
∑

1≤i1<...<ik≤n

xi1 · · ·xik

Theorem 175. Consider the extension K(x1, . . . , xn)/K(s1, . . . , sn).

1. The extension is Galois.

2. Gal(K(x1, . . . , xn)/K(s1, . . . , sn)) ∼= Sn.

3. Every symmetric polynomial is a polynomial in the symmetric polynomials s1, . . . , sn.

Proof. (1): The variables x1, . . . , xn are the distinct roots of Xn−s1X
n−1+· · ·+(−1)nsn ∈ K(s1, . . . , sn)[X].

Thus the extension is a splitting field.
(2): A permutation σ ∈ Sn acts on rational functions as follows: if P (x1, . . . , xn) ∈ K(x1, . . . , xn) then

σ(P (x1, . . . , xn)) = P (xσ(1), . . . , xσ(n)) and these are clearly automorphisms in Gal(K(x1, . . . , xn)/K(s1, . . . , sn)).
But [K(x1, . . . , xn) : K(s1, . . . , sn)] ≤ n! (from the section on splitting fields) and so we get equality com-
paring cardinalities.

(3): The main theorem of Galois theory yields K(x1, . . . , xn)Sn = K(s1, . . . , sn).

Corollary 176. Every finite group is a Galois group of a finite Galois extension.

Proof. If G has order n then G ⊂ Sn and so Gal(K(x1, . . . , xn)/K(x1, . . . , xn)G) = G.
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The main tool in computing the Galois group of a polynomial is the following:

Lemma 177. Let K be any field and P (X) ∈ K[X] a separable polynomial.

1. If P (X) is irreducible of degree n then Gal(P ) ⊂ Sn and has order divisible by n.

2. If P (X) = P1(X) · · ·Pk(X) where Pi is irreducible of degree ni then the splitting field of P is the
composite of the splitting fields of Pi and therefore Gal(P ) ⊂ Sn1

× · · · × Snk .
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3. If Q(X) ∈ K[X] is any separable irreducible that splits over the splitting field of P then Gal(P ) acts
transitively on the roots of Q(X).

Proof. (1) and (2): Gal(P ) permutes the roots of irreducible polynomials and so Gal(P ) acts on the roots
of Pi so we get a homomorphism Gal(P ) → Sn1

× · · · × Snk . Every automorphism in Gal(P ) is uniquely
defined by what it does on the roots of P (X) and so this homomorphism is injective. Adjoining one root of
Pi shows that ni | |Gal(P )|.

(3): Again Gal(P ) acts on the roots of Q. If α, β are two roots of Q then there exists an isomor-
phism K(α) ∼= K(β) extending the identity on K. From the section on splitting field this extends to an
automorphism of the splitting field which is then an element of Gal(P ).

Definition 178. The discriminant of a polynomial P (X) ∈ K[X] is the expression

D = disc(P ) =
∏
i<j

(αi − αj)2

where α1, . . . , αn are all the roots of P (X). Clearly D 6= 0 iff P is separable.

Proposition 179. Suppose P (X) ∈ K[X] is a separable polynomial and D = disc(P ).

1. D ∈ K and
D = (−1)(

n
2)
∏
i6=j

(αi − αj) = (−1)(
n
2)
∏
i

P ′(αi)

2. Suppose K has characteristic different from 2. Let σ ∈ Gal(P ) thought of as an element of Sn by
letting σ permute the set of roots {α1, . . . , αn}. Then σ ∈ An iff σ(

√
D) =

√
D.

3. Suppose K has characteristic different from 2. Gal(P ) ⊂ An iff
√
D ∈ K.

Proof. Done in class. See Dummit and Foote Propositions 33 and 34 on pages 610 and 611.

Example 180. 1. disc(X2 + aX + b) = a2− 4b. Clearly Gal is either 1 = A2 or S2 according to whether
the discriminant is a square or not.

2. disc(X3 + aX + b) = −4a3 − 27b2. If the cubic is irreducible then Gal has order divisible by 3 so is
either A3 or S3.

3. From homework disc(Xn + aX + b) = (−1)(
n
2)nnqn−1 + (−1)(

n−1
2 )(n− 1)n−1pn.

Theorem 181 (Galois groups over Q). Let P (X) ∈ Z[X] be an irreducible polynomial of degree n. Suppose
p - disc(P ) is a prime number and

P (X) ≡ P 1(X) · · ·P k(X) (mod p)

is the factorization mod p. Then there exists σ ∈ Gal(P ) whose cycle type is (degP1, . . . ,degPk).

Proof. Hard, uses algebraic number theory.

Example 182. This theorem works with large Galois groups.

1. X5 + 20X + 16 has discriminant 216 · 56 so Gal ⊂ A5. Mod 3 it is irreducible so there exists a 5-cycle
in Gal. Mod 7 it splits as a linear times a linear times a cubic so there exists a 3-cycle. But A5 is
generated by a 3-cycle and a 5-cycle and so Gal = A5.

2. X5 + 20X + 15. Mod 3 get that Gal contains a transposition and mod 13 the polynomial is irreducible
so Gal contains a 5-cycle. We deduce that Gal = S5 which confirms that the discriminant 55 ·257 ·1217
is not a square.
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5.6 The fundamental theorem of algebra

Theorem 183. The field C = R(i) is algebraically closed.

Proof. Done in class. See Dummit and Foote Theorem 35 on page 616.

5.7 Infinite Galois theory

Example 184. 1. The extension K/K is Galois when K is perfect.

2. More generally if K has characteristic p and is not perfect then Ksep/K is Galois.

3. If L1 ⊂ L2 ⊂ . . . are all Galois over K and L = ∪Li then L/K is Galois.

Proposition 185. Suppose L/K is infinite Galois.

1. Let I = {L/M/K|M/K finite Galois} with M ≺M ′ if M ⊂M ′. Then I is a directed set.

2. Consider {Gal(M/K)}M∈I with maps πM ′,M : Gal(M ′/K) → Gal(M/K) sending σ 7→ σ|M if M ≺
M ′. Then {Gal(M/K)}M∈I is an inverse system and

Gal(L/K) ∼= lim←−Gal(M/K)

3. Suppose L/N/K such that N/K is (possibly infinite) Galois. Then under the isomorphism Gal(L/K) ∼=
lim←−Gal(M/K) we have the identification

Gal(L/N) = lim←−Gal(M/N ∩M)

taking Gal(M/N ∩M) as a subgroup of Gal(M/K).

Proof. (1): If M,M ′/K are finite Galois then MM ′/K is finite Galois and so I is a directed set.
(2): Consider the map φM : Gal(L/K)→ Gal(M/K) sending σ 7→ σ|M . If M ≺M ′ then (σ|M ′)|M = σ|M

and so πM ′,M ◦ φM ′ = φM . The universal property of inverse limits yields φ : Gal(L/K) → lim←−Gal(M/K)
such that φM = πM ◦ φ where πM : lim←−Gal(M/K)→ Gal(M/K) is projection onto the M -th coordinate.

(Recall that lim←−Gu = {(gu) ∈
∏
Gu|gu = πv,u(gv),∀u ≺ v}.)

Suppose φ(σ) = 1. If α ∈ L let M be the splitting field of the minimal polynomial of α. Then
φM (σ) = 1 implies σ|M = idM and so σ(α) = α. We deduce σ = 1 and so φ is injective. Reciprocally, if
(σM ) ∈ lim←−Gal(M/K) define σ : L → L by σ(α) = σM (α) for any M containing α (there is always one
such M , namely the splitting field of the minimal polynomial of α). This is well-defined as σM (α) = σM ′(α)
for any M ⊂M ′. The map σ is clearly a homomorphism, its inverse corresponds by the same procedure to
(σ−1
M ) and clearly fixes K as each σM does. Thus σ ∈ Gal(L/K) and φ(σ) = (σM ). So φ is also surjective.
(3): This is identical to (2).

Example 186. 1. Remark that Fp = ∪Fpn . The proposition implies that

Gal(Fp/Fp) ∼= lim←−Z/nZ =: Ẑ =
∏
q

Zq

where recall that Zq = lim←−Z/qnZ.

2. Suppose p is a prime. Then

Gal(Q(µp∞)/Q) ∼= lim←−(Z/pnZ)× ∼= Z×p

and the composition
Gal(Q/Q)→ Gal(Q(µp∞)/Q) ∼= Z×p
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is called the p-cyclotomic character. It governs the behavior of Hodge theory of smooth projective
varieties over Qp.
When p > 2 we can say a little more as (Z/pnZ)× ∼= Z/(p− 1)Z× Z/pn−1Z so

Gal(Q(µp∞)/Q) ∼= Z/(p− 1)Z× lim←−Z/pn−1Z ∼= Z/(p− 1)Z× Zp

3. Going slightly further, let Q(µ∞) = ∪Q(µn). Then

Gal(Q(µ∞)/Q) ∼= lim←−(Z/nZ)× ∼= Ẑ× ∼=
∏
q

Z×q

This is the main theorem of Class Field Theory for Q. For finite extensions of Q it is considerably
more difficult as one needs suitable replacements of µn which can be found in the torsion of formal
groups.

4. Consider the subfield Q∞ of Q(µp∞) fixed under Z/(p − 1)Z. Then Gal(Q∞/Q) ∼= Zp. It turns out
that Q∞ is the only Galois extension of Q with Galois group Zp. Leopoldt’s conjecture states that if K
is the splitting field over Q of an irreducible polynomial P (X) with r pairs of complex conjugate roots
then there are exactly 1 + r independent extensions of K with Galois group Zp. This is still open.
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Theorem 187 (Main theorem of Galois theory). Let L/K be infinite Galois. Endow Gal(L/K) with the
profinite topology.

1. There is a bijection between the set of subextensions L/M/K and the set of (topologically) closed
subgroups H of Gal(L/K). The correspondence is the usual M 7→ Gal(L/M) and H 7→ LH .

2. M/K is Galois if and only if Gal(L/M)CGal(L/K) in which case Gal(M/K) ∼= Gal(L/K)/Gal(L/M).

3. If H is open (and thus also closed) then LH/K is finite.

Proof. (1): First we check that Gal(L/M) is closed in Gal(L/K) and then show that the two maps are
inverses to each other.

Note that Gal(L/M) ∼= lim←−Gal(N/M ∩N) as N/K is finite Galois, from the previous proposition. Since
each Gal(N/M ∩N) is a subgroup of Gal(N/K) it suffices to show that if Hu is a subgroup of the finite group
Gu then lim←−Hu is a closed subgroup of lim←−Gu. It is clearly a subgroup. If (gu) /∈ lim←−Hu then gu0

/∈ Hu0

for some u0. Consider U = {gu0} ×
∏
v 6=u0

Gv which is an open neighborhood of (gu) clearly disjoint from
lim←−Hu. Thus lim←−Hu is closed in lim←−Gu.

Next, let α ∈ LGal(L/M). Let N be the splitting field of the minimal polynomial of α over K. Then
N/M ∩N is finite Galois. Since Gal(L/M) projects onto Gal(N/M ∩N) it follows that α ∈ NGal(N/M∩N)

and so α ∈M ∩N . Thus LGal(L/M) = M .
Finally, suppose H ⊂ Gal(L/K) is a closed subgroup. We want to show that Gal(L/LH) = H. For

M/K finite Galois we have πM : Gal(L/K) → Gal(M/K), surjective. Let HM = πM (H), a subgroup of
Gal(M/K). From the universal property get a homomorphism H → lim←−HM . It is injective using the explicit
description of lim←− as compatible sequences. Finally, suppose (σM ) ∈ lim←−HM is a compatible sequence. If
(σM ) /∈ H then there exists an open neighborhood U of (σM ) contained in the complement of H. The open
set U can be chosen of the form

∏
M≺M0

{σM}×
∏
M 6≺M0

Gal(M/K) (simply by choosing M0 large enough).
Let σ ∈ H mapping to σM0

in HM0
(by definition such a σ exists). Then σ ∈ U as πM (σ) = σM for all

M ≺M0, contradicting the fact that U ∩H = ∅.
What is HM? Every πM (σ) ∈ HM fixes LH ∩M and so HM ⊂ Gal(M/LH ∩M) whenever M/K is finite

Galois. But LH ∩M = MHM by definition of HM and so Gal(M/LH ∩M) = HM by the main theorem of
finite Galois theory. We deduce that H = lim←−HM = lim←−Gal(M/LH ∩M) = Gal(L/LH) as desired.
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(2): The proof from the finite case carries over.
(3): H open has finite index in Gal(L/K) (proved this on a homework last semester) and so Gal(LH/K) ∼=

Gal(L/K)/H is finite.

Example 188. Let L/K = Q(µp∞ ,
p∞
√

2)/Q. Then Gal(L/K) ∼= {
(
a b

1

)
∈ GL(2,Zp)}. Indeed, choose

ζpn such that ζp
m−n

pm = ζpn . Then ζpn 7→ ζa mod pn

pn for all n and pn
√

2 7→ ζb mod pn

pn
pn
√

2 for all n is the

automorphism attached to the matrix

(
a b

1

)
.

The Galois group has as nonclosed subgroup H = {
(

1 b
1

)
|b ∈ Z}. What is the fixed subfield? Certainly

Q(µp∞) is contained in the fixed field. Then Gal(L/LH) is closed and necessarily contains H. However, the

smallest closed subgroup containing H is {
(

1 b
1

)
|b ∈ Zp} with fixed subfield Q(µp∞) and so LH = Q(µp∞).
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6 Representation theory

6.1 G-modules

Definition 189. Let R be a commutative ring. A G-module over R is an R-module M with an action of G
such that the action of G is R-linear.

When R = Z we simply say that M is a G-module.
When R = F is a field we say that M is a representation of G over the field F as M is then automatically

an F -vector space.

Proposition 190. A G-module over R is the same as an R[G]-module.

Proof. If M is a G-module over R define scalar multiplication
∑
ag[g] ·m :=

∑
agg(m) which turns M into

an R[G]-module. Reciprocally, if M is an R[G]-module then it is also an R-module. The group G acts on
M via g(m) := [g] ·m.

Example 191. 1. Let R be any commutative ring.

(a) Sn acts on Rn by permuting coordinates. Then Rn is an Sn-module over R.

(b) Rn−1 = {(x1, . . . , xn) ∈ Rn|
∑
xi = 0} is also an Sn-module over R. This is called the standard

representation of Sn over R.

(c) GL(n,R) acts on Rn by matrix multiplication and so Rn is a GL(n,R)-module over R. This is
called the standard representation of GL(n,R) over R.

(d) GL(n,R) acts on Mn×n(R) by g · X := gXg−1. This is called the adjoint of the standard
representation.

2. Let L/K be a Galois extension and G = Gal(L/K).

(a) Then G acts on both L and L× and L and L× are then G-modules.

(b) If µn ⊂ L then µn is a G-module.

3. If G is any group and χ : G→ R× is any homomorphism then consider the R[G]-module R(χ) defined
as follows: it is the ring R considered as an R[G]-algebra with respect to the homomorphism R[G]→ R
given by

∑
ag[g] 7→

∑
agχ(g).
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4. Two special examples.

(a) µn is a D2n-module via symmetries.

(b) C2 is a Q8 module as follows. Writing Q8 = 〈I, J〉 let I act on C2 via the matrix

(
i
−i

)
and

J via the matrix

(
−1

1

)
.

There are two goals that we’ll pursue:

1. Study MG = {m ∈ M |g(m) = m,∀g ∈ G}. We’ve already seen that if G = Gal(L/K) and M = L
then MG = K is the main theorem of Galois theory. It is nontrivial and consequential. The ability to
compute MG is very useful.

2. We’d like to classify the finitely generated G-modules over R. For example, when R = F is a field and
G is cyclic then F [G] is a quotient of F [X,X−1] and, since F [X] is a PID, we can classify the finitely
generated F [G]-modules. Over algebraically closed fields, i.e., the study of representation theory over
algebraically closed fields, this may be done.

To pursue the first goal we’ll study the derived functors of (−)G: group cohomology. To pursue the
second goal we’ll study the structure of noncommutative rings.

6.2 Group cohomology

6.2.1 Basic examples

Proposition 192. The map M 7→MG is a functor from G-modules over R to R-modules. This functor is
covariant left-exact.

Proof. Consider R as an R[G]-module via R[G] → R sending
∑
ag[g] to

∑
ag. Then HomR[G](R,M) is

uniquely defined by where 1 ∈ R goes. Such a homomorphism takes 1 to m ∈ M such that m = f(1) =
f(g(1)) = g(f(1)) = g(m) for all g ∈ G as G acts trivially on R. Thus f(1) ∈ MG and any choice of
f(1) = m ∈MG will yield a homomorphism f(r) = rf(1) ∈ HomR[G](R,M).

Thus (−)G = HomR[G](R,−) and so we get a covariant left-exact functor.
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Definition 193. Let Hk(G,−) be the k-th right derived functor of the left-exact covariant functor (−)G.
The previous proposition shows that

Hk(G,M) = ExtkZ[G](Z,M)

Proposition 194. If 0 → M ′ → M → M ′′ → 0 is an exact sequence of G-modules then there is a long
exact sequence of abelian groups

0→ (M ′)G →MG → (M ′′)G → H1(G,M ′)→ H1(G,M)→ H1(G,M ′′)→ H2(G,M ′)→ . . .

Proof. Follows from the long exact sequence for Ext•Z[G](Z,−).

Example 195. If G = 1 is the trivial group then Z[G] = Z and so Z is a free Z[G]-module. Thus

Hk(1,M) = ExtkZ(Z,M) = 0

for all k ≥ 1 while H0(1,M) = M1 = M .

51



In the previous example we used that Ext(M,N) vanishes when M is projective of N is injective. More
generally we may compute Hk(G,M) = ExtkZ[G](Z,M) using either a projective resolution of Z as a Z[G]-
module or an injective resolution of M as a Z[G]-module. We will use projective resolutions.

Example 196. Suppose G ∼= Z/nZ is cyclic generated by φ ∈ G and suppose M is a G-module. This
general example is problem D1 on the midterm. Note that Z[G] = Z[Z/nZ] ∼= Z[X]/(Xn − 1). Under this
isomorphism we get a commutative diagram of exact sequences

. . .
φ−1 // Z[G]

N //

∼=
��

Z[G]
φ−1 //

∼=
��

Z[G]
N //

∼=
��

Z[G]
φ−1 //

∼=
��

Z[G]

∑
//

∼=
��

Z // 0

. . .
·(X−1)// Z[X]

(Xn − 1)

·
∑
Xi // Z[X]

(Xn − 1)

·(X−1)// Z[X]

(Xn − 1)

·
∑
Xi // Z[X]

(Xn − 1)

·(X−1)// Z[X]

(Xn − 1)

P 7→P (1) // Z // 0

where the map Z[G]→ Z is
∑
ag[g] 7→

∑
ag which turns Z into the trivial Z[G]-module and N = [1] + [φ] +

· · ·+ [φn−1] ∈ Z[G].
This can be checked to be exact and yields a free and therefore projective resolution. Therefore Hk(G,M)

can be computed as the k-th cohomology of the image of the above resolution under the covariant functor
HomZ[G](−,M), i.e.,

Hk(G,M) = Hk
(
HomZ[G](Z[G],M)→ HomZ[G](Z[G],M)→ HomZ[G](Z[G],M)→ HomZ[G](Z[G],M)→ . . .

)
Since HomZ[G](Z[G],M) ∼= M we get

Hk(G,M) ∼= Hk
(
M

φ−1−→M
N−→M

φ−1−→ . . .M
N−→M →

)
where now N = 1 + φ+ · · ·+ φn−1 ∈ EndZ(M) and φ− 1 = φ− id ∈ EndZ(M). Immediately we get

Hk(G,M) ∼=


MG = Mφ=1 k = 0

MN=0/(φ− 1)(M) k ≥ 1 odd

Mφ=1/N(M) k ≥ 2 even

where Mφ=1 = {m ∈ M |φ(m) = m} and MN=0 = {m ∈ M |N(m) = 0M}. Here 0M is the identity in
the abelian group M . When M is written multiplicatively then all additions become multiplications and
OM = 1 is the multiplicative unit.

1. We now do some explicit computations. Let G = Gal(C/R) and M = C×. Then G = 〈c〉 is generated
by complex conjugation and so N(z) =“1 + c”(z) = z · c(z) = |z|2 while “c− 1”(z) = c(z)/z = z/z as
the group M is written multiplicatively. We compute

M c=1 = {z ∈ C×|z = z} = R×

(c− 1)(M) = {z/z|z ∈ C×} = {e−2iθ|0 ≤ θ < 2π} = S1

MN=0 = {z ∈ C×||z|2 = 1} = S1

N(M) = {|z|2|z ∈ C×} = (0,∞)

Therefore

Hk(Gal(C/R),C×) =


R× k = 0

1 k ≥ 1 odd

{±1} k ≥ 2 even
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2. Again let G = Gal(C/R) but now take M = µn ⊂ C×. We compute

M c=1 = {z ∈ µn|z = z} = µn ∩ R =

{
1 n odd

±1 n even

(c− 1)(M) = {z/z|z ∈ µn} = {e−4πik/n} =

{
µn n odd

µn/± 1 n even

MN=0 = {z ∈ µn||z|2 = 1} = µn

N(M) = {|z|2|z ∈ µn} = 1

Putting everything together we see that for every k ≥ 0

Hk(Gal(C/R), µn) =

{
1 n odd

±1 n even

3. On the homework you’ll have to show that if G = Gal(Fqd/Fq) ∼= Z/dZ generated by the Frobenius
automorphism φ(x) = xq and M = F×

qd
then

Hk(Gal(Fqd/Fq),F×qd) = 0

whenever k ≥ 1.

6.2.2 Computing group cohomology in general: cocycles and coboundaries

When G was finite cyclic we saw an explicit simple projective resolution of Z by free Z[G]-modules. When
G is a general finite group we can still find an explicit, albeit more complicated, free resolution.

Consider Z[Gk], the group ring of Gk = G×G×· · ·×G, as a Z[G]-module under the ring homomorphism
Z[G] → Z[Gk] defined on basis elements by [g] 7→ [(g, g, . . . , g)]. Then Z[Gk] ∼=

⊕
Gk/G Z[G] is a free

Z[G]-module.

Proposition 197. The following is a free resolution of Z[G]-modules:

. . .→ Z[G3]
d−→ Z[G2]

d−→ Z[G]
∑
−→ Z→ 0

where d : Z[Gk]→ Z[Gk−1] is defined on basis elements by

d(g1, . . . , gk) =

k∑
i=1

(−1)i−1(g1, . . . , ĝi, . . . , gk)

Proof. Explicit computations. For example if x ∈ Z[G] is in the kernel of
∑

then x =
∑
ag[g] and

∑
ag = 0.

But then x = x−
∑
ag[1] = d

∑
ag[(g, 1)].

As a corollary

Hk(G,M) = Hk
(
HomZ[G](Z[G],M)→ HomZ[G](Z[G2],M)→ . . .

)
which explicitly means

Hk(G,M) =
ker
(
HomZ[G](Z[Gk+1],M)→ HomZ[G](Z[Gk+2],M)

)
Im
(
HomZ[G](Z[Gk],M)→ HomZ[G](Z[Gk+1],M)

)
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Theorem 198. Let Z1(G,M) = {f : G→M any function|f(gh) = g(f(h))+f(g),∀g, h ∈ G} (the cocycles)
and B1(G,M) = {fm|m ∈M} (the coboundaries) where for m ∈M the function fm : G→M is defined by
fm(g) = m− g(m). Then B1(G,M) ⊂ Z1(G,M) and

H1(G,M) = Z1(G,M)/B1(G,M)

Proof. Note that f ∈ HomZ[G](Z[Gk],M) is uniquely defined by what it does on basis elements. Let

(g1, . . . , gk) ∈ Gk in which case we only need to specify f([(g1, . . . , gk)]). But f isG-linear and so f([(g1, . . . , gk)]) =
f([g1][(1, g−1

1 g2, . . . , g
−1
1 gk)]) = g1(f([(1, g−1

1 g2, . . . , g
−1
1 gk)])) and so f is uniquely defined by what it does

on elements of the form (1, x2, . . . , xk). We conclude that

HomZ[G](Z[Gk],M) ∼= Maps(Gk−1,M)

and we fix an isomorphism by sending f : Z[Gk]→M to the map φ(g1, . . . , gk−1) := f([(1, g1, g1g2, . . . , g1g2 · · · gk−1)]).
This seems peculiar and there are many isomorphisms but this choice makes the formulae for the differential
maps particularly nice.

In particular HomZ[G](Z[G],M) ∼= M , HomZ[G](Z[G2],M) ∼= Maps(G,M) and HomZ[G](Z[G3],M) ∼=
Maps(G2,M). We only need to make explicit the differential maps. The map d : M → Maps(G,M) is the
map d : HomZ[G](Z[G],M)→ HomZ[G](Z[G2],M) given by composing with d([g, h]) = [g]− [h]. Thus d sends
m ∈ M ∼= HomZ[G](Z[G],M) to the map φm ∈ HomZ[G](Z[G2],M) that sends [(g, h)] to g(m) − h(m). To
this map we associate g 7→ φm([(1, g)]) = fm in Maps(G,M).

Similarly HomZ[G](Z[G2],M) → HomZ[G](Z[G3],M) is given by composing with [(g, h, k)] 7→ [(h, k)] −
[(g, k)]+[(g, h)]. Thus if φ ∈ Maps(G,M) corresponds to f ∈ HomZ[G](Z[G2],M) (i.e., φ(g, h) = f([(1, g, gh)]))
then dφ corresponds to df which takes [(g, h, k)] to f([(h, k)])− f([(g, k)]) + f([(g, h)]). To this map is asso-
ciated dφ ∈ Maps(G2,M) defined by

dφ(g, h) = (df)([(1, g, gh)]) = f([(g, gh)])− f([(1, gh)]) + f([(1, g)]) = g(φ(h))− φ(gh) + φ(g)

We deduce that
ker(HomZ[G](Z[G2],M)→ HomZ[G](Z[G3],M)) = Z1(G,M)

and
Im(HomZ[G](Z[G],M)→ HomZ[G](Z[G2],M)) = B1(G,M)

and the theorem follows.
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Corollary 199. If G acts trivially on M then H1(G,M) ∼= HomGroups(G,M).

Proof. Since G acts trivially on M , m− g(m) = 0 so B1(G,M) = 0. Also Z1(G,M) = {f : G→M |f(gh) =
f(h) + f(g)} = Hom(G,M).

Proposition 200. Let H be a subgroup of G and M a G-module. For each k ≥ 0 there exist homomorphisms

resk : Hk(G,M)→ Hk(H,M)

and
cork : Hk(H,M)→ Hk(G,M)

such that cork ◦ resk is multiplication by [G : H] on Hk(G,M).

Proof. This uses the notion of universal delta functors from homological algebra, which we didn’t cover,
but let me just say that res0 : MG → MH is usual inclusion, res1 is given by restriction Maps(G,M) →
Maps(H,M) and cor0 : MH →MG is the averaging map cor0(m) =

∑
g∈G/H g(m). Then clearly cor0 ◦ res0 =

|G/H| = [G : H].
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Corollary 201. If G is finite and M is a G-module over a vector space of characteristic which does not
divide |G| then Hk(G,M) = 0 for all k ≥ 1. E.g., Hk(G,M) = 0 for k ≥ 1 whenever M is a divisible abelian
group.

Proof. Consider resk : Hk(G,M) → Hk(1,M) = 0 and cork : Hk(1,M) = 0 → Hk(G,M). Then
cork ◦ resk = 0 is multiplication by |G| on the vector space Hk(G,M). Since |G| is invertible in the field this
can only happen if the vector space has dimension 0, i.e., if Hk(G,M) = 0.

Corollary 202 (Useful in ramification theory). Let G act trivially on Z. Then

H2(G,Z) ∼= G∨

the Pontryagin dual of G.

Proof. Consider the exact sequence 0→ Z→ Q→ Q/Z→ 0 which gives

H1(G,Q)→ H1(G,Q/Z)→ H2(G,Z)→ H2(G,Q)

and the previous result yields H2(G,Z) ∼= H1(G,Q/Z) ∼= Hom(G,Q/Z) = G∨.

6.2.3 Hilbert 90 and Kummer theory

We’ve seen that H1(Gal(C/R),C×) = 0 and H1(Gal(Fqd/Fq),F×qd) = 0. In fact this is true for all finite

Galois extensions L/K.

Theorem 203 (Hilbert’s theorem 90). If L/K is a finite Galois extension of fields then

H1(Gal(L/K), L×) = 0

The same is true if we replace L× with L.

Proof. Uses linear independence of characters.

More generally, when G is a profinite group, e.g., a Galois group, then one can still study group coho-
mology Hk(G,M) as long as the action of G on M is continuous. This means that M =

⋃
U⊂GM

U as U
varies through the open subgroups of G. In that case one defines

Hk(G,M) = lim−→
U⊂G

Hk(G/U,MU )

For example when L/K is Galois then

Hk(Gal(L/K), L×) ∼= lim−→
L/M/K

Hk(Gal(M/K),M×)

as M/K is finite Galois. This follows from the fact that Gal(L/K) = lim←−Gal(M/K) while L× =
⋃
M×.

Crucially Hk(G,−) is still the right-derived functor of (−)G and so one has long exact sequences attached
to short exact ones.

Corollary 204. If L/K is infinite Galois (e.g., K/K when K is perfect) then

H1(Gal(L/K), L×) = 0

Proof. H1(Gal(L/K), L×) = lim−→L/M/K
H1(Gal(M/K),M×) = lim−→ 0 = 0.

Proposition 205. If ζn ∈ K then H1(Gal(K/K), µn) ∼= K×/(K×)n. (E.g., we already saw that H1(Gal(C/R), µ2) =
R×/(0,∞) = ±1.)
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Proof. Consider the exact sequence 1 → µn → K
× → K

× → 1 which gives the long exact sequence (as

K
Gal(K/K)

= K)

K×
x 7→xn−→ K× → H1(Gal(K/K), µn)→ H1(Gal(K/K),K

×
)

Hilbert 90 shows that H1(Gal(K/K), µn) is then the cokernel of the n-th power map on K×, as desired.

Proposition 206. Suppose K is a field of characteristic 0 and ζn ∈ K. Then the set of finite cyclic Galois
extensions L/K of order dividing n is in bijection with K×/(K×)n. (E.g., extensions of Q of degree 1 or
2 are of the form Q(

√
d) and are in bijection with d ∈ Q×/(Q×)2, two extensions Q(

√
d) and Q(

√
d′) being

the same iff d and d′ differ by a square factor.)

Proof. Such extensions L are in bijection, according to Galois theory, with open subgroups of Gal(K/K)
which are cyclic and have order dividing n. In other words they are in bijection with homomorphisms
Gal(K/K) → Z/nZ associating the such a homomorphism the fixed field of K under the kernel of the
homomorphism.

Therefore we need to compute Hom(Gal(K/K),Z/nZ). Since ζn ∈ K then Gal(K/K) acts trivially on
µn ∼= Z/nZ so we need to compute

Hom(Gal(K/K),Z/nZ) = Hom(Gal(K/K), µn)

∼= H1(Gal(K/K), µn)

∼= K×/(K×)n

Remark 16. This yields another proof of the fact that cyclic extensions of K of order dividing n are of the
form K( n

√
a).

Remark 17. How does one make explicit the isomorphism Hom(Gal(K/K), µn) ∼= K×/(K×)n. Suppose
a ∈ K×/(K×)n. Choose n

√
a, which is unique up to an element of µn. To this is attached the homomorphism

Gal(K/K)→ µn sending σ to σ( n
√
a)/ n
√
a. Note that even if this cohomology class seems to be a coboundary,

it is not. A coboundary is of the form σ 7→ σ(b)/b for b ∈ K× whereas n
√
a ∈ K× iff a = 1 in K×/(K×)n.
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6.3 A little noncommutative algebra

Definition 207. Let R be a noncommutative ring and M a left R-module. The module M is said to be
simple if there are no proper sub-R-modules. The module is said to be semisimple if it is a direct sum of
simple modules.

A ring R is said to be simple/semisimple if it is so as a module over itself.

The fundamental theorem of noncommutative algebra is the following:

Theorem 208 (Wedderburn). Let K be a field. Every simple K-algebra is of the form Mn×n(D) where D
is a division K-algebra.

Proof. Take for granted.

Example 209. 1. Every extension L/K is a division K-algebra and so Mn×n(L) is a simple K-algebra.

2. If K = R let H = R ⊕ iR ⊕ jR ⊕ kR with the algebra structure i2 = j2 = k2 = −1, ij = k, jk = i,
ki = j. This is the ring of real quaternions. It is a division ring because

(a+ bi+ cj + dk)(a− bi− cj − dk) = a2 + b2 + c2 + d2

and so every nonzero element of the algebra is invertible. It is clearly not a field.
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Definition 210. A simple K-algebra A is said to be central if Z(A) = K.

Proposition 211. Let K be a field. If A and B are two central simple algebras then A ⊗K B is a central
simple K-algebra.

Proof. Take for granted.

Corollary 212. Let Br(K) be the set of all central (necessarily simple) division K-algebras. Then Br(K)
is naturally a group, called the Brauer group.

Proof. Suppose A,B ∈ Br(K). Then A ⊗K B is simple and therefore Wedderburn’s theorem implies there
exists a division K-algebra C such that A ⊗K B ∼= Mn×n(C). Centrality implies that K = Z(A ⊗K B) =
Z(Mn×n(C)) ∼= Z(C) and so C is a central division K-algebra.

Theorem 213. If K is a field then

Br(K) ∼= H2(Gal(K/K),K
×

)

Example 214. 1. LetK be any algebraically closed field, e.g., K = C. Then Br(K) ∼= H2(Gal(K/K),K
×

) =
H2(1,K×) = 0 and so K itself is the only central division K-algebra, in this case a field. Remark that
every extension of K, algebraic or not, is a division K-algebra, but it is not central.

2. Let K = R. Then Br(R) ∼= H2(Gal(C/R),C×) which we already computed to be {±1}. The field R is
itself in Br(R) as well as the quaternions H described above. One consequence of this computation is
that H⊗R H ∼= M4×4(R). Indeed, (−1)2 = 1 so the group structure shows that the tensor product is a
matrix algebra over R. A comparison of dimension yields 4× 4.

3. If Fq is a finite field then Br(Fq) ∼= H2(Gal(Fq/Fq),F
×
q ) = lim−→H2(Gal(Fqd/Fq),F×qd) = lim−→ 0 = 0. This

implies that Fq is the only central division Fq-algebra.

Corollary 215 (Wedderburn’s little theorem). Every finite division ring is a field.

Proof. Let D be a finite division ring and let F = Z(D). Then F is stable under addition, multiplication
and division and so is a division sub-algebra. It is commutative by definition so it is a finite field, F = Fq.
Thus D is a (necessarily) central division Fq-algebra and so D ∼= Mn×n(Fq) as Br(Fq) = 0. But D is a
division ring so n = 1 and thus D = Fq, a field.

Corollary 216. If K is algebraically closed, e.g., if K = C, then K is the only finite dimensional division
K-algebra.

Proof. Let R be a finite dimensional division K-algebra and let L = Z(R) be the center, necessarily a finite
field extension of K. Since K is algebraically closed L = K and so R is a central division K-algebra. Then
use Br(K) = 0 to deduce that R = K.

Example 217. Let p be a prime and Qp the fraction field of Zp = lim←−Z/pnZ. Local class field theory yields
Br(Qp) ∼= Q/Z so the central division Qp-algebras are in bijection with the divisible group Q/Z.

If D is a central division Q-algebra then tensoring with R and Qp yields again central division algebras.
Global class field theory yields an exact sequence

0→ Br(Q)→ Br(R)⊕
⊕

Br(Qp)→ Q/Z→ 0

and thus

Br(Q) ∼= ker

(
1

2
Z/Z⊕

⊕
countable

Q/Z
∑
−→ Q/Z

)
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6.4 Representation theory of finite groups

Let G be a finite group and F a field. We would like to study the category of representations of G over F ,
in other words G-modules over F . A representation is thus a pair (ρ, V ) where V is an F -vector space while
ρ : G→ AutF (V ) is the action homomorphism.

Theorem 218 (Mashke’s theorem). If the characteristic of F is p - |G| then every finite dimensional
representation of G over F is semisimple.

Proof. I decided to skip the proof. I had already written it though.
It suffices to show that if W ⊂ V is a subrepresentation then V ∼= W ⊕ U for some subrepresentation

U . Then inductively we can write V as a direct sum of simple modules as the process has to terminate by
dimension considerations.

Suppose W ⊂ V is a sub-F -vector space which is stable under the action of G. Let π : V → W be any
vector space projection, i.e., any vector space homomorphism such that π|W = idW and π2 = π. Define

π̃(v) =
1

|G|
∑
g∈G

g−1(π(g(v)))

which is clearly a vector space homomorphism V →W as π(g(v)) ∈W and W is stable under G. Moreover,

π̃(h(v)) =
1

|G|
∑

g−1(π(g(h(v)))) = h(π̃(v))

and so π̃ : V → W is a F [G]-module homomorphism. It’s also clear that π̃2 = π̃ and π̃|W = idW . The
natural inclusion W → V is an F [G]-linear section to π̃ and so V ∼= W ⊕ ker π̃ as F [G]-modules.

From now on we restrict to representations of G on complex vector spaces. Mashke’s theorem implies
that every finite dimensional complex representation of G is a direct sum of irreducible representations. It
is therefore desirable to determine the set of all irreducible representations.

Proposition 219. C[G] ∼= ⊕Mni×ni(C) for 1 ≤ i ≤ d.

Proof. C[G] is a finite dimensional module over itself and therefore it is semisimple and thus a direct sum of
simple C-algebras. Recalling that C is the only finite dimensional division C-algebra, Wedderburn’s theorem
yields the result.

Lecture 40
2015-04-29

I explained that
C[G] ∼= ⊕V EndC(V )

where V ranges through the set of all irreducible finite dimensional complex representations of G, if G is
finite.

Then I explained that the natural group ring structure on C[G] is isomorphic to the ring of functions
Maps(G,C) with addition and the convolution product. The explicit isomorphism between Maps(G,C) and
⊕EndC(V ) is given by Fourier transforms.

We deduced that the Fourier transform of the convolution of two functions is the product of the Fourier
transforms of the functions.

I finished with the following example. Suppose a cyllinder has a grid with m rows and n columns. The
goal is two write reals in the m× n squares, not all 0, such that the real in each square is equal to the sum
of the reals in the adjacent squares. I showed that this can be done if and only if there exist integers k and
l such that m+ 1 - k and

cos

(
kπ

m+ 1

)
+ cos

(
2lπ

n

)
=

1

2

Actually I only showed that if the cyllindrical table can be filled then there exist k and l satisfying the above
formula.

58


