Math 30810 Honors Algebra 3
 Homework 2

Andrei Jorza

Due Thursday, September 8

Do any 8 of the following 10 questions. Artin a.b.c means chapter a, section b, exercise c.

1. Artin 2.1.1 on page 69 .
2. Artin 2.2.2 on page 69 .
3. Artin 2.2 .4 on page 70 .
4. Artin 2.2 .6 on page 70 .
5. Let B be the subset of $\operatorname{GL}_{n}(\mathbb{R})$ consisting of upper-triangular matrices. Show that B is a subgroup of $\mathrm{GL}_{n}(\mathbb{R})$.
6. Let T be the subset of $\mathrm{GL}_{n}(\mathbb{R})$ consisting of diagonal matrices. Show that T is a subgroup of $\mathrm{GL}_{n}(\mathbb{R})$.
7. Show that the set of matrices

$$
H=\left\{\left.\left(\begin{array}{ccccccc}
1 & x_{1} & x_{2} & \ldots & x_{n-1} & x_{n} & z \\
0 & 1 & 0 & 0 & \ldots & 0 & y_{1} \\
0 & 0 & 1 & 0 & \ldots & 0 & y_{2} \\
& & & \ddots & & & \vdots \\
0 & 0 & 0 & \ldots & 0 & 1 & y_{n} \\
0 & 0 & 0 & \ldots & 0 & 0 & 1
\end{array}\right) \right\rvert\, x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, z \in \mathbb{R}\right\}
$$

forms a subgroup of $\mathrm{GL}_{n+2}(\mathbb{R})$. It is called the Heisenberg group.
8. For a matrix $A \in M_{n \times n}(\mathbb{R})$, let A^{t} be the transpose matrix, so that the $i j$-entry of A^{t} is the $j i$ entry of A. Prove that if $A \in \mathrm{GL}_{n}(\mathbb{R})$, then $\left(A^{-1}\right)^{t}=\left(A^{t}\right)^{-1}$. [Hint: recall that for matrices A and B in $\left.M_{n \times n}(\mathbb{R}),(A B)^{t}=B^{t} A^{t}.\right]$
9. (This is the Euclidean algorithm) Let $a, b \in \mathbb{Z}_{\geq 1}$ and consider the division with remainder $a=b q+r$, with $0 \leq r<b$.
(a) Show that $(a, b)=(b, r)$.
(b) Write $r_{-1}=a$ and $r_{0}=b$ and define the sequence $\left(r_{n}\right)$ recursively using division with remainder $r_{n-1}=r_{n} q_{n}+r_{n+1}$ with $0 \leq r_{n+1}<r_{n}$. Show that if $r_{n}>0$ and $r_{n+1}=0$ then $r_{n}=(a, b)$.
10. (This is explicit Bezout. This seems elaborate but it really is straightforward and I recommend you do it.) Suppose $a, b \in \mathbb{Z}_{n \geq 1}$. We define the sequences $\left(r_{n}\right),\left(q_{n}\right),\left(u_{n}\right)$ and $\left(v_{n}\right)$ recursively as follows: $r_{-1}=a, r_{0}=b$, and for $n \geq 0$ define q_{n+1} and r_{n+1} using the division with remainder $r_{n-1}=$ $r_{n} q_{n+1}+r_{n+1}$ with $0 \leq r_{n+1}<r_{n}$. Also define $u_{-1}=1, v_{-1}=0, u_{0}=0, v_{0}=1$ and for $n \geq 0$

$$
\begin{aligned}
& u_{n+1}=u_{n-1}-q_{n+1} u_{n} \\
& v_{n+1}=v_{n-1}-q_{n+1} v_{n}
\end{aligned}
$$

(a) Show that $r_{n}=a u_{n}+b v_{n}$ by induction on n.
(b) Show that $(a, b)=a u_{N}+b v_{N}$ where N is the largest index such that $r_{N}>0$. Here you may use the previous exercise whether or not you actually did it.
(c) (Optional) Use this algorithm to find m and n such that $17 m+23 n=1$. [This is how a computer solves Bezout.]

