
Math 30810 Honors Algebra 3

Homework 2

Andrei Jorza

Due Thursday, September 8

Do any 8 of the following 10 questions. Artin a.b.c means chapter a, section b, exercise c.

1. Artin 2.1.1 on page 69.

Proof. We check (ab)c = ac = a and a(bc) = ab = a so the composition law is associative.

If e is an identity then ea = a for all a ∈ S but the composition law dictates that ea = e. Therefore if
S has an identity then S = {e}.

2. Artin 2.2.2 on page 69.

Proof. Write S for the set with composition law and identity and G = {x ∈ S | x has an inverse}.
Clearly e ∈ G as e−1 = e. Also, if x, y ∈ G then (xy)−1 = y−1x−1 so xy also has an inverse and
therefore xy ∈ G. Finally, (x−1)−1 = x so x−1 also has an inverse and therefore x−1 ∈ G. This implies
that G is a group.

3. Artin 2.2.4 on page 70.

Proof. (a): Yes. If you invert or multiply matrices with real coefficients you still get a matrix with real
coefficients.

(b): Yes.

(c): No as −1 is not a positive integer.

(d): Yes. If you multiply or divide positive reals you still get positive reals.

(e): No. H is not even a subset of G.

4. Artin 2.2.6 on page 70.

Proof. First, we check associativity. But (a ∗ b) ∗ c = c(ba) = (cb)a = (b ∗ c)a = a ∗ (b ∗ c) from the
associativity of multiplication in G. Next, if e is an identity in G then x∗e = ex = x and e∗x = xe = x
so e is an identity in G◦. Finally, if x has inverse y in G then x ∗ y = yx = e and y ∗ x = xy = e so y
is also an inverse in G◦.

5. Let B be the subset of GLn(R) consisting of upper-triangular matrices. Show that B is a subgroup of
GLn(R).
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Proof. First, In ∈ B.

Next, let A = (aij) and B = (bij) be upper triangular with aij = bij = 0 for i > j. Write AB = C =
(cij). For i > j

cij =
∑
k

aikbkj =
∑
k<i

0 · bkj +
∑
k≥i

aij · 0 = 0

as when k < i we have aik = 0 and if k ≥ i > j then k > j and so bkj = 0. This means that AB is also
upper triangular.

Finally, we need that if A is upper triangular in GLn(R) then A−1 is also upper triangular. There’s a
few ways to do this, here are four:

Method A. I learned this from Amelia’s solution. I think it’s the easiest. Recall that the cofactor
matrix A∗ = (bij) satisfies AA∗ = det(A)In where bij = (−1)i+j detAji with Aij is the minor where
you remove the i-th row and j-column. Then A−1 = (detA)−1A∗ so it’s enough to show that A∗ is
upper triangular. Suppose i > j. We’d like to show that bij = 0 which is equivalent to detAji = 0.
But Aji will be, simply by inspection, upper triangular with 0s on the diagonal in positions (j, j),
(j + 1, j + 1), . . . , (i− 1, i− 1) and so detAji = 0.

Method B (Uses homework 1) I learned this one from Patrick’s solution. Suppose your matrix
is A = (aij) upper triangular invertible with nonzero entries on the diagonal. The diagonal matrix
B = diag(a11, . . . , ann) has inverse B−1 = diag(a−111 , . . . , a

−1
nn) and if you look at AB−1 you’ll see that it

is upper triangular with 1-s on the diagonal. Write N = AB−1−In which will be upper triangular with
0s on the diagonal. Then N2 will have 0s on the diagonals j = i and j = i+ 1 and you can check that
Nk will have 0s on the diagonals 0 ≤ j − i ≤ k − 1. When k = n+ 1 this implies that N is nilpotent.
But you already know that if N is nilpotent then In + N is invertible from the first homework, with
inverse In − N + N2 − · · · which will then be upper triangular. Therefore A = (In + N)B is also
invertible with inverse B−1(In +N)−1 which is then also upper triangular.

Method C (Induction). This is the method that will yield most positive results in general. Please
read this. We’ll show by induction on n that A−1 is upper triangular. The base case of the induction
is n = 1 in which case A = (a11) and its inverse is (a−111 ).

For the inductive step, let A11 = (aij)i,j>1. Since A11 is upper triangular with n−1 rows and columns
the inductive hypothesis implies that A−111 is upper triangular. The simply compute

A−1 =

(
a11 ~a

0n−1,1 A11

)−1
=

(
a−111 −a−111 ~aA

−1
11

0n−1,1 A−111

)
which is upper triangular as A−111 is upper triangular.

Method D (Brute force) This is somewhat nasty, you can skip it. I only included it to show it’s
possible. We seek B = (bij) such that AB = In, i.e.,

∑
aikbkj = δij where In = (δij) so δij is 1 if i = j

and 0 if i 6= j. As A is upper triangular this can be rewritten as
∑

k≥i aikbkj = δij . Let’s write these

equations in more detail. For i = n get annbnj = δnj which immediately yields bnj = a−1nnδnj for j ≤ n.
Note that among these bnn is nonzero and the other bnj are 0. (Since A is invertible remember that
all the diagonal terms aii are invertible.)

Next, for i = n− 1 get an−1,n−1bn−1,j + an−1,nbn,j = δn−1,j . We already know bn,j for all j and so we
compute

bn−1,j = a−1n−1,n−1(δn−1,j − an−1,nbn,j)

noting that if j < n− 1 then δn−1,j = 0 and bn,j = 0 and so bn−1,j = 0.

Keep going like this and see that you can determine all bi,j and that the inverse matrix B = (bij) is
upper triangular.

Method E (Cool calculus method) This is a nice calculusy method that has lots of uses in general.
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Remember that the Taylor series ex = 1 + x+ x2/2! + x3/3! + · · · converges everywhere and that the
Taylor series log(1 + x) = x − x2/2 + x3/3 − · · · converges where |x| < 1. We can plug in matrices
instead of the real variable x and we can make sense of eA = 1 + A + A2/2! + A3/3! + · · · for every
matrix A. If A happens to be upper triangular then so is every power Ak and so eA is also upper
triangular.

What about log(1+A)? If A is upper triangular with 0-s on the diagonal then A2 has 0-s on the diagonal
i = j AND on the diagonal j = i+ 1, A3 has zeros on the diagonals 0 ≤ j− i ≤ 2 and so on all the way
to An = 0, where A is n×n. This means that the Taylor series log(1+A) = A−A2/2+ · · · terminates
at (−1)n−1An/n so this power series is a well defined finite sum with no issues of convergence. Again,
since every Ak is upper triangular, so is log(1 +A).

Let’s get back to our problem at hand, namely: if A is upper triangular invertible then A−1 is also
upper triangular. Look at the diagonal matrix B = diag(a11, . . . , ann) which has inverse B−1 =
diag(a−111 , . . . , a

−1
nn) (it’s invertible as det(A) =

∏
aii 6= 0). Then AB−1 has 1-s on the diagonal and so

X = AB−1 − 1 has 0-s on the diagonal which means that C = log(AB−1) = log(1 +X) makes sense.
Moreover, since X is upper triangular, so is C. Now

e−C = e− log(AB−1) = (elog(AB−1))−1 = (AB−1)−1 = BA−1

so A−1 = B−1e−C . We’re now done because C is upper triangular, therefore so is e−C and therefore
so is A−1 = B−1e−C .

Remark: This entire proof was based on the idea that log(x−1) = − log(x) so after log inversion is
very simple. We only needed to make sense of all these operations for matrices. While this seems over
the top, this method is extremely useful and often used in differential equations, so don’t disregard it.

6. Let T be the subset of GLn(R) consisting of diagonal matrices. Show that T is a subgroup of GLn(R).

Proof. Note that diag(x1, . . . , xn) diag(y1, . . . , yn) = diag(x1y1, . . . , xnyn) and diag(x1, . . . , xn)−1 =
diag(x−11 , . . . , x−1n ).

7. Show that the set of matrices

H =





1 x1 x2 . . . xn−1 xn z
0 1 0 0 . . . 0 y1
0 0 1 0 . . . 0 y2

. . .
...

0 0 0 . . . 0 1 yn
0 0 0 . . . 0 0 1


| x1, . . . , xn, y1, . . . , yn, z ∈ R


forms a subgroup of GLn+2(R). It is called the Heisenberg group.

Proof. Write m(~x, ~y, z) for the matrix in the statement. Clearly m(~0,~0, 0) = In is an identity. Also,

m(~x, ~y, z)m(~x′, ~y′, z′) = m(~x+ ~x′, ~y + ~y′, z + z′ + x1y
′
1 + · · ·+ xny

′
n)

so H is closed under multiplication.

Finally,
m(~x, ~y, z)−1 = m(−~x,−~y,−z + x1y1 + · · ·+ xnyn)
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8. For a matrix A ∈ Mn×n(R), let At be the transpose matrix, so that the ij-entry of At is the ji entry
of A. Prove that if A ∈ GLn(R), then (A−1)t = (At)−1. [Hint: recall that for matrices A and B in
Mn×n(R), (AB)t = BtAt.]

Proof. It’s enough to check that (A−1)tAt = In. But (A−1)tAt = (A ·A−1)t = Itn = In.

9. (This is the Euclidean algorithm) Let a, b ∈ Z≥1 and consider the division with remainder a = bq + r,
with 0 ≤ r < b.

(a) Show that (a, b) = (b, r).

(b) Write r−1 = a and r0 = b and define the sequence (rn) recursively using division with remainder
rn−1 = rnqn + rn+1 with 0 ≤ rn+1 < rn. Show that if rn > 0 and rn+1 = 0 then rn = (a, b).

Proof. (a): Suppose d | a, b. Then d | r = a− bq and so d | (b, r). If d | b, r then d | a = bq + r and so
d | (a, b). We conclude that (a, b) = (b, r).

(b): The sequence of residues r−1 = a, r0 = b > r1 > r2 > . . . ≥ 0 must have a smallest positive entry
rn > 0 and rn+1 = 0. Then part (a) applied many times gives

(a, b) = (b, r1) = (r1, r2) = . . . = (rn−1, rn) = (rn, 0) = rn

as the gcd between rn and 0 is rn.

10. (This is explicit Bezout. This seems elaborate but it really is straightforward and I recommend you
do it.) Suppose a, b ∈ Zn≥1. We define the sequences (rn), (qn), (un) and (vn) recursively as follows:
r−1 = a, r0 = b, and for n ≥ 0 define qn+1 and rn+1 using the division with remainder rn−1 =
rnqn+1 + rn+1 with 0 ≤ rn+1 < rn. Also define u−1 = 1, v−1 = 0, u0 = 0, v0 = 1 and for n ≥ 0

un+1 = un−1 − qn+1un

vn+1 = vn−1 − qn+1vn

(a) Show that rn = aun + bvn by induction on n.

(b) Show that (a, b) = auN + bvN where N is the largest index such that rN > 0. Here you may use
the previous exercise whether or not you actually did it.

(c) (Optional) Use this algorithm to find m and n such that 17m+ 23n = 1. [This is how a computer
solves Bezout.]

Proof. (a): We show this by induction. The base case is r−1 = a = a · 1 + b · 0 = au−1 + bv−1 and
r0 = b = 0 · a+ 1 · b = u0a+ v0b.

By definition rn+1 = rn−1 − qn+1rn. The inductive hypothesis is that rn−1 = aun−1 + bvn−1 and
rn = aun + bvn and so we deduce that

rn+1 = rn−1 − qn+1rn

= aun−1 + bvn−1 − qn+1(aun + bvn)

= a(un−1 − qn+1un) + b(vn−1 − qn+1vn)

= aun+1 + bvn+1

which yields the inductive step.

(b): The previous exercise show that if N is the largest index such that rN > 0 then rN = (a, b) and
so from part (a) we deduce that (a, b) = auN + bvN .

(c): Here is the result of the algorithm:
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n rn qn un vn
−1 23 − 1 0

0 17 − 0 1
1 6 1 1 −1
2 5 2 −2 3
3 1 1 3 −4
4 0 5

which implies that 1 = (17, 23) = 17 · (−4) + 23 · 3.
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