
Math 30810 Honors Algebra 3

Homework 3

Andrei Jorza

Due Thursday, September 15

Do any 8 of the following 10 questions. Artin a.b.c means chapter a, section b, exercise c.

1. Artin 2.4.3

Proof. If (ab)k = 1 it follows that 1 = (ab)k = a(ba)k−1b and so (ba)k−1 = a−1b−1 = (ba)−1 which
immediately implies that (ba)k = 1. The reciprocal is also true and therefore (ab)k = 1 iff (ba)k = 1
and so ab and ba have the same order.

2. Artin 2.4.7

Proof. It suffices to check that H is stable under multiplication and inversion. But x−1 = x, y−1 = y
and (xy)−1 = xy from the assumption that each of these elements has order 2. To check that H is
closed under multiplication we look at the multiplication table (the entry on row a and column b is
the product ab)

1 x y xy
1 1 x y xy
x x x2 xy x2y
y y yx y2 yxy
xy xy xyx xy2 (xy)2

and we need that every entry in the table is in H. Each of x, y, xy has order 2 so that takes care of
the squares. Moreover, since (xy)2 = 1 it follows that xyxy = 1 and so yx = x2yxy2 = x(xyxy)y = xy
so x and y commute. By inspection every entry is now in H.

3. Artin 2.6.2

Proof. Suppose f : Z → Z is a homomorphism of (additive) groups. Then f(1) = a ∈ Z. From class
we know that f(n) = nf(1) for all integers n ∈ Z and so f(n) = na for all n ∈ Z. Moreover, given a
the map fa sending n to na is a homomorphism.

The map fa is injective whenever a 6= 0. It is surjective if and only if 1 ∈ Im fa = aZ and so if and
only if a ∈ {−1, 1}.

4. For a matrix A ∈ Mn×n(C) define eA = In + A + A2/2! + A3/3! + · · · . You may assume that this

expression always converges to a matrix eA ∈Mn×n(C). If S ∈ GLn(C) show that eSAS
−1

= SeAS−1.
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Proof. Note that (SAS−1)n = SAS−1SAS−1 · · ·SAS−1 = SAnS−1 and so

eSAS
−1

=
∑
n≥0

(SAS−1)n

n!
=

∑ SAnS−1

n!
= SeAS−1

5. In the context of the previous exercise show that if A is upper triangular with a1, . . . , an on the diagonal
then eA is upper triangular with ea1 , . . . , ean on the diagonal and conclude that det(eA) = eTr(A). As an
optional exercise show that for any matrix A, det(eA) = eTr(A) and deduce that eA is always invertible.
[Hint: You may use the following standard fact from linear algebra, that for every matrix A you can
find an invertible matrix S such that SAS−1 is upper triangular.]

Proof. Remember from last homework that if you multiply two upper triangular matrices the result is
also upper triangular and the diagonal entries are simply the products of the diagonal entries of the
two matrices. Therefore if A is upper triangular with diagonal entries (a11, . . . , ann) then Ak is upper
triangular with diagonal entries (ak11, . . . , a

k
nn). We deduce that eA is upper triangular with diagonal

entries

(
∑
k≥0

ak11
k!
, . . . ,

∑
k≥0

aknn
k!

) = (ea11 , . . . , eann)

Since the determinant of an upper triangular matrix is the product of the diagonal entries we deduce
that

det eA =
∏

eaii = e
∑
aii = eTrA

For the optional part for any matrix A there exists an invertible matrix S and an upper triangular B
such that A = SBS−1. In fact B can be chosen to be the Jordan canonical form with entries only on
the diagonal and off diagonal. Then the previous problem implies that

det eA = det eSBS
−1

= detSeBS−1 = det eB = eTrB = eTrS
−1AS = eTrA

where we used that det is multiplicative and Tr(S−1AS) = TrA.

6. Let G be a group with subgroups H and K. Show that H ∪K is a group if and only if one of H and
K contains the other.

Proof. Suppose that H 6⊂ K. Then there exists h ∈ H − K. For any k ∈ K we have h, k ∈ H ∪ K
and since H ∪K is a group it follows that hk ∈ H ∪K. If hk ∈ K it follows that h ∈ K · k−1 = K
which is impossible by choice of h. Therefore hk ∈ H and so k ∈ h−1 ·H = H and so we deduce that
K ⊂ H.

7. Show that every cyclic group is abelian.

Proof. This is easy. Note that xm · xn = xm+n = xn · xm.

8. Let G be a group and g ∈ G. Show directly that g and g−1 have the same order.

Proof. Remember from class that for h ∈ G, Sh = {n ∈ Z | hn = 1} is a subgroup of Z and is of
the form ord(h)Z where ord(h) > 0, unless Sh = {0} in which case ord(h) = ∞. Therefore ord(h) is
completely determined by Sh.

Since gn = 1 iff g−n = (g−1)n = 1 it follows that Sg = Sg−1 so g and g−1 have the same order.
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9. Prove that every subgroup of a cyclic group is cyclic.

Proof. Let G = 〈x〉 be a cyclic group and H ⊂ G a subgroup. Let S = {n ∈ Z | xn ∈ H}. Since H is
closed under division it follows that S is closed under subtraction and therefore S ⊂ Z is a subgroup.
But then S = aZ for an integer a in which case H = 〈xa〉 as desired.

10. Let n ≥ 2 be an integer. To a permutation σ ∈ Sn attach the matrix P (σ) = (aij) such that for every
i, aσ(i),i = 1 and ai,j = 0 if i 6= σ(j). Show that P is a homomorphism P : Sn → GLn(R).

Proof. Let σ, τ ∈ Sn. We need to verify that P (σ)P (τ) = P (στ). In that case P (σ)P (σ−1) = P (1) = In
and so P (σ) is automatically invertible.

Suppose P (σ) = (aij) with aσ(i),i = 1 for all i and ai,j = 0 whenever i 6= σ(j) and suppose that
P (τ) = (bij) with bτ(i),i = 1 for all i and bi,j = 0 whenever i 6= τ(j). Let’s compute P (σ)P (τ) = (cij):

cij =
∑
k

aikbkj

As bkj = 0 unless k = τ(j) we can simplify this to cij = ai,τ(j)bτ(j),j . But this is 0 unless i = σ(τ(j)),
in which case is it 1. Therefore P (σ)P (τ) = P (στ) as desired.
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