Math 30810 Honors Algebra 3 Homework 4

Andrei Jorza

Due Thursday, September 22

Do any 8 of the following questions. Artin a.b.c means chapter a, section b, exercise c.

1. Artin 2.5.5
2. Artin 2.6.7
3. Artin 2.6.9
4. Suppose H is a subgroup of a group G. Show that the definition of normality from class is equivalent to the one from the textbook, i.e., show that if H is a subgroup such that $g H^{-1} \subset H$ for all $g \in G$, then $g H g^{-1}=H$ for all $g \in G$.
5. Let G be a group. Recall that $\operatorname{End}(G)$ is the set of homomorphisms $f: G \rightarrow G$ and $\operatorname{Aut}(G) \subset \operatorname{End}(G)$ is the subset of those homomorphisms which are isomorphisms.
(a) Show that usual composition of functions yields an associative composition law on $\operatorname{End}(G)$ with identity given by the identity function. (There is something you need to check here!)
(b) Show that $f \in \operatorname{End}(G)$ has an inverse with respect to the composition law iff $f \in \operatorname{Aut}(G)$ and conclude that $\operatorname{Aut}(G)$ is a group.
6. Let G be a group. Recall from class that if $g \in G$ then the map $\phi_{g}(x)=g x g^{-1}$ is a homomorphism $\phi_{g} \in \operatorname{End}(G)$.
(a) Show that in fact $\phi_{g} \in \operatorname{Aut}(G)$.
(b) Show that the map $\Phi: G \rightarrow \operatorname{Aut}(G)$ given by $\Phi(g)=\phi_{g}$ is a group homomorphism.
(c) (Optional) Show that $\operatorname{ker} \Phi=Z(G)$, the center of the group G.
7. Show that $\operatorname{Inn}(G)$, defined as the set of all inner automorphism $\left\{\phi_{g} \mid g \in G\right\}$, is a normal subgroup of Aut (G). [Hint: Use the previous problem.]
8. Show that if G is a group of order 4 then either it is cyclic or it is isomorphic to the Klein 4 -group V.
9. Show that $\langle(123)\rangle$ is normal in S_{3} but the subgroups $\langle(12)\rangle,\langle(13)\rangle$ and $\langle(23)\rangle$ are not normal in S_{3}.
10. Show that in $S_{n},\left(i_{1}, \ldots, i_{k}\right)=\left(i_{1}, i_{2}\right)\left(i_{2}, i_{3}\right) \cdots\left(i_{k-1}, i_{k}\right)$ for any cycle $\left(i_{1}, \ldots, i_{k}\right)$.
11. (This is a useful problem) For $1 \leq i, j \leq n$ consider the matrix $E_{i j} \in M_{n \times n}(\mathbb{C})$ with 1 in position $i j$ and 0s everywhere else.
(a) For $i \neq j$ show that $I_{n}+E_{i j} \in \mathrm{GL}_{n}(\mathbb{C})$.
(b) For a general matrix $X \in \mathrm{GL}_{n}(\mathbb{C})$ compute $X E_{i j}$ and $E_{i j} X$ and show that $Z\left(\mathrm{GL}_{n}(\mathbb{C})\right)=\mathbb{C}^{\times} I_{n}$.
