Math 30810 Honors Algebra 3 Homework 4

Andrei Jorza

Due Thursday, September 22

Do any 8 of the following questions. Artin a.b.c means chapter a, section b, exercise c.

- 1. Artin 2.5.5
- 2. Artin 2.6.7
- 3. Artin 2.6.9
- 4. Suppose H is a subgroup of a group G. Show that the definition of normality from class is equivalent to the one from the textbook, i.e., show that if H is a subgroup such that $gHg^{-1} \subset H$ for all $g \in G$, then $gHg^{-1} = H$ for all $g \in G$.
- 5. Let G be a group. Recall that $\operatorname{End}(G)$ is the set of homomorphisms $f: G \to G$ and $\operatorname{Aut}(G) \subset \operatorname{End}(G)$ is the subset of those homomorphisms which are isomorphisms.
 - (a) Show that usual composition of functions yields an associative composition law on End(G) with identity given by the identity function. (There is something you need to check here!)
 - (b) Show that $f \in \text{End}(G)$ has an inverse with respect to the composition law iff $f \in \text{Aut}(G)$ and conclude that Aut(G) is a group.
- 6. Let G be a group. Recall from class that if $g \in G$ then the map $\phi_g(x) = gxg^{-1}$ is a homomorphism $\phi_g \in \text{End}(G)$.
 - (a) Show that in fact $\phi_g \in \operatorname{Aut}(G)$.
 - (b) Show that the map $\Phi: G \to \operatorname{Aut}(G)$ given by $\Phi(g) = \phi_g$ is a group homomorphism.
 - (c) (Optional) Show that ker $\Phi = Z(G)$, the center of the group G.
- 7. Show that Inn(G), defined as the set of all inner automorphism $\{\phi_g \mid g \in G\}$, is a normal subgroup of Aut(G). [Hint: Use the previous problem.]
- 8. Show that if G is a group of order 4 then either it is cyclic or it is isomorphic to the Klein 4-group V.
- 9. Show that $\langle (123) \rangle$ is normal in S_3 but the subgroups $\langle (12) \rangle$, $\langle (13) \rangle$ and $\langle (23) \rangle$ are not normal in S_3 .
- 10. Show that in S_n , $(i_1, \ldots, i_k) = (i_1, i_2)(i_2, i_3) \cdots (i_{k-1}, i_k)$ for any cycle (i_1, \ldots, i_k) .
- 11. (This is a useful problem) For $1 \leq i, j \leq n$ consider the matrix $E_{ij} \in M_{n \times n}(\mathbb{C})$ with 1 in position ij and 0s everywhere else.
 - (a) For $i \neq j$ show that $I_n + E_{ij} \in \mathrm{GL}_n(\mathbb{C})$.
 - (b) For a general matrix $X \in \operatorname{GL}_n(\mathbb{C})$ compute XE_{ij} and $E_{ij}X$ and show that $Z(\operatorname{GL}_n(\mathbb{C})) = \mathbb{C}^{\times}I_n$.