
Math 30810 Honors Algebra 3

Homework 4

Andrei Jorza

Due Thursday, September 22

Do any 8 of the following questions. Artin a.b.c means chapter a, section b, exercise c.

1. Artin 2.5.5

Proof. Note that

(
A B

D

)(
A′ B′

D′

)
=

(
AA′ AB′ +BD′

DD′

)
and

(
A B

D

)−1
=

(
A−1 −A−1BD−1

D−1

)
.

Therefore H is a subgroup. Let f : M → GLr(R) be the map sending M to A. By inspecting the
formulas we immediately see that f(M−1) = f(M)−1 and f(MM ′) = f(M)f(M ′) and so f is a

homomorphism. It’s kernel is the subgroup of matrices of the form

(
Ir B

D

)
.

2. Artin 2.6.7

Proof. Note that if x = gag−1 and y = gbg−1 then xy−1 = gag−1(gbg−1)−1 = gag−1gbg−1 = gabg−1 ∈
gHg−1 and so gHg−1 is closed under division which implies it is a subgroup.

3. Artin 2.6.9

Proof. Consider the map f : G→ G◦ given by f(g) = g−1. It is a bijection of sets as g−1 = 1 iff g = 1
and g−1 = h−1 iff g = h. Moreover,

f(gh) = (gh)−1 = h−1g−1 = g−1 ∗ h−1 = f(g) ∗ f(h)

and so f is a homomorphism.

4. Suppose H is a subgroup of a group G. Show that H is normal in G if and only if for all g ∈ G,
gHg−1 ⊂ H. (In class we required gHg−1 = H.)

Proof. We need to show that in fact gHg−1 = H. Pick h ∈ H. Then g−1hg ∈ g−1Hg ⊂ H by
assumption. But h = g(g−1hg)g−1 ∈ gHg−1 and so we conclude that H ⊂ gHg−1.

5. Let G be a group. Recall that End(G) is the set of homomorphisms f : G→ G and Aut(G) ⊂ End(G)
is the subset of those homomorphisms which are isomorphisms.

(a) Show that usual composition of functions yields an associative composition law on End(G) with
identity given by the identity function. (There is something you need to check here!)

(b) Show that f ∈ End(G) has an inverse with respect to the composition law iff f ∈ Aut(G) and
conclude that Aut(G) is a group.
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Proof. (a): Composition on functions on a set X is associative and has the identity map as an identity.
What we need to check is that if we compose two homomorphisms we also get a homomorphism. But
if f, g ∈ End(G) then f(g(xy)) = f(g(x)g(y)) = f(g(x))f(g(y)) as each of f and g is a homomorphism.
Therefore f ◦ g, which a priori is only a function, is also a homomorphism so composition yields a
composition law on End(G).

(b): Suppose f admits a homomorphism inverse g. Then f ◦ g =G and g ◦ f =G. From the former we
deduce that f is surjective as Im f ◦ g ⊂ Im f and from the second we deduce that f is injective as
ker f ⊂ ker g ◦ f . Thus f is bijective and so f is an isomorphism. If, reciprocally, f is bijective then
it has a set theoretic inverse f−1. We need to show that this is an inverse in End(G), i.e., that f−1

is also a homomorphism. Pick x, y ∈ G. Since f is surjective there exist a, b ∈ G such that f(a) = x
and f(b) = y. Then f−1(xy) = f−1(f(a)f(b)) = f−1(f(ab)) = ab = f−1(x)f−1(y) so f−1 is also a
homomorphism.

Therefore Aut(G) is the set of elements in End(G) which have an inverse and so, by the previous
homework, Aut(G) is a group.

6. Let G be a group. Recall from class that if g ∈ G then the map φg(x) = gxg−1 is a homomorphism
φg ∈ End(G).

(a) Show that in fact φg ∈ Aut(G).

(b) Show that the map Φ : G→ Aut(G) given by Φ(g) = φg is a group homomorphism.

(c) (Optional) Show that ker Φ = Z(G), the center of the group G.

Proof. (a): In class we showed that φg is an endomorphism. Now kerφg = {x | gxg−1 = 1} = 1 and
so φg is injective. Moreover, φg(g−1xg) = x for every x ∈ G and so φg is surjective. Thus φg is an
isomorphism.

(b): We need to check that Φ(gh) = Φ(g)Φ(h), i.e., that φgh = φg ◦φh. But φg ◦φh(x) = φg(hxh−1) =
ghxh−1g−1 = φgh(x) as (gh)−1 = h−1g−1.

(c): ker Φ = {g ∈ G | φg =G} and φg =G iff gxg−1 = x for all x ∈ G, i.e., iff gx = xg for all x ∈ G.
But this is Z(G) by definition.

7. Show that Inn(G), defined as the set of all inner automorphism {φg | g ∈ G}, is a normal subgroup of
Aut(G). [Hint: Use the previous problem.]

Proof. By definition Inn(G) = Im Φ is the image of the homomorphism Φ : G → Aut(G) defined in
the previous problem. Immediately we deduce that Inn(G) is a subgroup of Aut(G). We need to check
that it is normal. Suppose f ∈ Aut(G) and φg ∈ Inn(G). Let’s compute fφgf

−1. For x ∈ G

fφgf
−1(x) = f(φg(f−1(x))) = f(gf−1(x)g−1) = f(g)xf(g)−1 = φf(g)

and so fφgf
−1 = φf(g) which immediately shows that f Inn(G)f−1 ⊂ Inn(G). We deduce that Inn(G)

is normal in Aut(G).

8. Show that if G is a group of order 4 then either it is cyclic or it is isomorphic to the Klein 4-group V .

Proof. G is a group so it contains 1, and let x ∈ G− {1}. If x has order 4 then G = 〈x〉 is cyclic from
the proposition we proved in class.

Let’s suppose this is not the case, which implies that ord(x) < 4 as 〈x〉 ⊂ G. Let y ∈ G − 〈x〉. If
ord(x) = 3 then G = {1, x, x2, y} and xy cannot be in G anymore as y is not in {1, x, x2}. This is
impossible and therefore ord(x) = 2 (it cannot have order 1 as x 6= 1). Then G contains 1, x, y and
therefore also xy. As x has order 2, x−1 = x and so xy /∈ {1, x, y}. This implies that G = {1, x, y, xy}.
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Now the map f : G→ V sending x to

(
−1

1

)
and y 7→

(
1
−1

)
is an isomorphism between G and

V simply by inspection.

9. Show that 〈(123)〉 is normal in S3 but the subgroups 〈(12)〉, 〈(13)〉 and 〈(23)〉 are not normal in S3.

Proof. 〈(123)〉 = A3 is normal in S3 as An is always normal in Sn.

Now (123)(12)(123)−1 = (13), (123)−1(13)(123) = (12) and (123)(13)(123)−1 = (23) and so the
subgroups generated by the three transposition are not normal in S3.

10. Show that in Sn, (i1, . . . , ik) = (i1, i2)(i2, i3) · · · (ik−1, ik) for any cycle (i1, . . . , ik).

Proof. Let c = (i1, . . . , ik) and τs = (is, is+1). To check that c = τ1 · · · τk−1 it suffices to check it on
each integer r between 1 and n.

If r /∈ {i1, . . . , ik} then c(r) = r and τs(r) = r for all s. Thus c(r) =
∏
τs(r) as desired.

Suppose r = im. Then τs(im) = im if s > m, τm(im) = im+1 and τs(im) = im if s < m − 1. This
means that for m ≤ k − 1

τ1 · · · τk−1(im) = τ1 · · · τm(im) = τ1 · · · τm−1(im+1) = im+1 = c(im)

and if m = k then

τ1 . . . τk−1(ik) = τ1 . . . τk−2(ik−1) = . . . τ1(i2) = i1 = c(ik)

11. (This is a useful problem) For 1 ≤ i, j ≤ n consider the matrix Eij ∈ Mn×n(C) with 1 in position ij
and 0s everywhere else.

(a) For i 6= j show that In + Eij ∈ GLn(C).

(b) For a general matrix X ∈ GLn(C) compute XEij and EijX and show that Z(GLn(C)) = C×In.

Proof. (a): Since i 6= j the matrix Eij is either upper or lower triangular with 0s on the diagonal.
Then homework 2 implies that Eij is nilpotent and so In + Eij is invertible by homework 1.

(b): If X = (xij) ∈ Z(GLn(R)) then (In +Eij)X = X(In +Eij) as In+Eij ∈ GLn(R) from part (a).
Breaking up parantheses we get XEij = EijX. But XEij is the matrix with 0s everywhere except
on the j-th column where the entries are x1i, x2i, . . . , xni, and EijX is the matrix with 0s everywhere
except on the j-th row where the entries are x1j , x2j , . . . , xnj . Since these two matrices must be equal
we deduce that xaj = 0 whenever a 6= j and xib = 0 whenever b 6= i and that xii = xjj . Letting i and
j be any two distinct indices implies that X must be a scalar matrix.

Clearly any scalar matrix commutes with any other matrix and so we deduce that Z(GLn(C)) =
C×In.
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