# Math 30810 Honors Algebra 3 Homework 4 

Andrei Jorza

Due Thursday, September 22

## Do any 8 of the following questions. Artin a.b.c means chapter a, section $b$, exercise $c$.

1. Artin 2.5.5

Proof. Note that $\left(\begin{array}{cc}A & B \\ & D\end{array}\right)\left(\begin{array}{cc}A^{\prime} & B^{\prime} \\ & D^{\prime}\end{array}\right)=\left(\begin{array}{cc}A A^{\prime} & A B^{\prime}+B D^{\prime} \\ & D D^{\prime}\end{array}\right)$ and $\left(\begin{array}{cc}A & B \\ & D\end{array}\right)^{-1}=\left(\begin{array}{cc}A^{-1} & -A^{-1} B D^{-1} \\ & D^{-1}\end{array}\right)$. Therefore $H$ is a subgroup. Let $f: M \rightarrow \mathrm{GL}_{r}(\mathbb{R})$ be the map sending $M$ to $A$. By inspecting the formulas we immediately see that $f\left(M^{-1}\right)=f(M)^{-1}$ and $f\left(M M^{\prime}\right)=f(M) f\left(M^{\prime}\right)$ and so $f$ is a homomorphism. It's kernel is the subgroup of matrices of the form $\left(\begin{array}{ll}I_{r} & B \\ & D\end{array}\right)$.
2. Artin 2.6.7

Proof. Note that if $x=g a g^{-1}$ and $y=g b g^{-1}$ then $x y^{-1}=g a g^{-1}\left(g b g^{-1}\right)^{-1}=g a g^{-1} g b g^{-1}=g a b g^{-1} \in$ $g H g^{-1}$ and so $g H g^{-1}$ is closed under division which implies it is a subgroup.
3. Artin 2.6.9

Proof. Consider the map $f: G \rightarrow G^{\circ}$ given by $f(g)=g^{-1}$. It is a bijection of sets as $g^{-1}=1$ iff $g=1$ and $g^{-1}=h^{-1}$ iff $g=h$. Moreover,

$$
f(g h)=(g h)^{-1}=h^{-1} g^{-1}=g^{-1} * h^{-1}=f(g) * f(h)
$$

and so $f$ is a homomorphism.
4. Suppose $H$ is a subgroup of a group $G$. Show that $H$ is normal in $G$ if and only if for all $g \in G$, $g H g^{-1} \subset H$. (In class we required $g H g^{-1}=H$.)

Proof. We need to show that in fact $g H g^{-1}=H$. Pick $h \in H$. Then $g^{-1} h g \in g^{-1} H g \subset H$ by assumption. But $h=g\left(g^{-1} h g\right) g^{-1} \in g H g^{-1}$ and so we conclude that $H \subset g H g^{-1}$.
5. Let $G$ be a group. Recall that $\operatorname{End}(G)$ is the set of homomorphisms $f: G \rightarrow G$ and $\operatorname{Aut}(G) \subset \operatorname{End}(G)$ is the subset of those homomorphisms which are isomorphisms.
(a) Show that usual composition of functions yields an associative composition law on $\operatorname{End}(G)$ with identity given by the identity function. (There is something you need to check here!)
(b) Show that $f \in \operatorname{End}(G)$ has an inverse with respect to the composition law iff $f \in \operatorname{Aut}(G)$ and conclude that $\operatorname{Aut}(G)$ is a group.

Proof. (a): Composition on functions on a set $X$ is associative and has the identity map as an identity. What we need to check is that if we compose two homomorphisms we also get a homomorphism. But if $f, g \in \operatorname{End}(G)$ then $f(g(x y))=f(g(x) g(y))=f(g(x)) f(g(y))$ as each of $f$ and $g$ is a homomorphism. Therefore $f \circ g$, which a priori is only a function, is also a homomorphism so composition yields a composition law on $\operatorname{End}(G)$.
(b): Suppose $f$ admits a homomorphism inverse $g$. Then $f \circ g={ }_{G}$ and $g \circ f={ }_{G}$. From the former we deduce that $f$ is surjective as $\operatorname{Im} f \circ g \subset \operatorname{Im} f$ and from the second we deduce that $f$ is injective as ker $f \subset$ ker $g \circ f$. Thus $f$ is bijective and so $f$ is an isomorphism. If, reciprocally, $f$ is bijective then it has a set theoretic inverse $f^{-1}$. We need to show that this is an inverse in $\operatorname{End}(G)$, i.e., that $f^{-1}$ is also a homomorphism. Pick $x, y \in G$. Since $f$ is surjective there exist $a, b \in G$ such that $f(a)=x$ and $f(b)=y$. Then $f^{-1}(x y)=f^{-1}(f(a) f(b))=f^{-1}(f(a b))=a b=f^{-1}(x) f^{-1}(y)$ so $f^{-1}$ is also a homomorphism.
Therefore $\operatorname{Aut}(G)$ is the set of elements in $\operatorname{End}(G)$ which have an inverse and so, by the previous homework, $\operatorname{Aut}(G)$ is a group.
6. Let $G$ be a group. Recall from class that if $g \in G$ then the map $\phi_{g}(x)=g x g^{-1}$ is a homomorphism $\phi_{g} \in \operatorname{End}(G)$.
(a) Show that in fact $\phi_{g} \in \operatorname{Aut}(G)$.
(b) Show that the map $\Phi: G \rightarrow \operatorname{Aut}(G)$ given by $\Phi(g)=\phi_{g}$ is a group homomorphism.
(c) (Optional) Show that $\operatorname{ker} \Phi=Z(G)$, the center of the group $G$.

Proof. (a): In class we showed that $\phi_{g}$ is an endomorphism. Now $\operatorname{ker} \phi_{g}=\left\{x \mid g x g^{-1}=1\right\}=1$ and so $\phi_{g}$ is injective. Moreover, $\phi_{g}\left(g^{-1} x g\right)=x$ for every $x \in G$ and so $\phi_{g}$ is surjective. Thus $\phi_{g}$ is an isomorphism.
(b): We need to check that $\Phi(g h)=\Phi(g) \Phi(h)$, i.e., that $\phi_{g h}=\phi_{g} \circ \phi_{h}$. But $\phi_{g} \circ \phi_{h}(x)=\phi_{g}\left(h x h^{-1}\right)=$ $g h x h^{-1} g^{-1}=\phi_{g h}(x)$ as $(g h)^{-1}=h^{-1} g^{-1}$.
(c): $\operatorname{ker} \Phi=\left\{g \in G \mid \phi_{g}={ }_{G}\right\}$ and $\phi_{g}={ }_{G}$ iff $g x g^{-1}=x$ for all $x \in G$, i.e., iff $g x=x g$ for all $x \in G$. But this is $Z(G)$ by definition.
7. Show that $\operatorname{Inn}(G)$, defined as the set of all inner automorphism $\left\{\phi_{g} \mid g \in G\right\}$, is a normal subgroup of Aut $(G)$. [Hint: Use the previous problem.]

Proof. By definition $\operatorname{Inn}(G)=\operatorname{Im} \Phi$ is the image of the homomorphism $\Phi: G \rightarrow \operatorname{Aut}(G)$ defined in the previous problem. Immediately we deduce that $\operatorname{Inn}(G)$ is a subgroup of $\operatorname{Aut}(G)$. We need to check that it is normal. Suppose $f \in \operatorname{Aut}(G)$ and $\phi_{g} \in \operatorname{Inn}(G)$. Let's compute $f \phi_{g} f^{-1}$. For $x \in G$

$$
f \phi_{g} f^{-1}(x)=f\left(\phi_{g}\left(f^{-1}(x)\right)\right)=f\left(g f^{-1}(x) g^{-1}\right)=f(g) x f(g)^{-1}=\phi_{f(g)}
$$

and so $f \phi_{g} f^{-1}=\phi_{f(g)}$ which immediately shows that $f \operatorname{Inn}(G) f^{-1} \subset \operatorname{Inn}(G)$. We deduce that $\operatorname{Inn}(G)$ is normal in $\operatorname{Aut}(G)$.
8. Show that if $G$ is a group of order 4 then either it is cyclic or it is isomorphic to the Klein 4 -group $V$.

Proof. $G$ is a group so it contains 1 , and let $x \in G-\{1\}$. If $x$ has order 4 then $G=\langle x\rangle$ is cyclic from the proposition we proved in class.

Let's suppose this is not the case, which implies that $\operatorname{ord}(x)<4$ as $\langle x\rangle \subset G$. Let $y \in G-\langle x\rangle$. If $\operatorname{ord}(x)=3$ then $G=\left\{1, x, x^{2}, y\right\}$ and $x y$ cannot be in $G$ anymore as $y$ is not in $\left\{1, x, x^{2}\right\}$. This is impossible and therefore $\operatorname{ord}(x)=2$ (it cannot have order 1 as $x \neq 1$ ). Then $G$ contains $1, x, y$ and therefore also $x y$. As $x$ has order $2, x^{-1}=x$ and so $x y \notin\{1, x, y\}$. This implies that $G=\{1, x, y, x y\}$.

Now the map $f: G \rightarrow V$ sending $x$ to $\left(\begin{array}{ll}-1 & \\ & 1\end{array}\right)$ and $y \mapsto\left(\begin{array}{cc}1 & \\ & \\ & -1\end{array}\right)$ is an isomorphism between $G$ and $V$ simply by inspection.
9. Show that $\langle(123)\rangle$ is normal in $S_{3}$ but the subgroups $\langle(12)\rangle,\langle(13)\rangle$ and $\langle(23)\rangle$ are not normal in $S_{3}$.

Proof. $\langle(123)\rangle=A_{3}$ is normal in $S_{3}$ as $A_{n}$ is always normal in $S_{n}$.
Now $(123)(12)(123)^{-1}=(13),(123)^{-1}(13)(123)=(12)$ and $(123)(13)(123)^{-1}=(23)$ and so the subgroups generated by the three transposition are not normal in $S_{3}$.
10. Show that in $S_{n},\left(i_{1}, \ldots, i_{k}\right)=\left(i_{1}, i_{2}\right)\left(i_{2}, i_{3}\right) \cdots\left(i_{k-1}, i_{k}\right)$ for any cycle $\left(i_{1}, \ldots, i_{k}\right)$.

Proof. Let $c=\left(i_{1}, \ldots, i_{k}\right)$ and $\tau_{s}=\left(i_{s}, i_{s+1}\right)$. To check that $c=\tau_{1} \cdots \tau_{k-1}$ it suffices to check it on each integer $r$ between 1 and $n$.
If $r \notin\left\{i_{1}, \ldots, i_{k}\right\}$ then $c(r)=r$ and $\tau_{s}(r)=r$ for all $s$. Thus $c(r)=\prod \tau_{s}(r)$ as desired.
Suppose $r=i_{m}$. Then $\tau_{s}\left(i_{m}\right)=i_{m}$ if $s>m, \tau_{m}\left(i_{m}\right)=i_{m+1}$ and $\tau_{s}\left(i_{m}\right)=i_{m}$ if $s<m-1$. This means that for $m \leq k-1$

$$
\tau_{1} \cdots \tau_{k-1}\left(i_{m}\right)=\tau_{1} \cdots \tau_{m}\left(i_{m}\right)=\tau_{1} \cdots \tau_{m-1}\left(i_{m+1}\right)=i_{m+1}=c\left(i_{m}\right)
$$

and if $m=k$ then

$$
\tau_{1} \ldots \tau_{k-1}\left(i_{k}\right)=\tau_{1} \ldots \tau_{k-2}\left(i_{k-1}\right)=\ldots \tau_{1}\left(i_{2}\right)=i_{1}=c\left(i_{k}\right)
$$

11. (This is a useful problem) For $1 \leq i, j \leq n$ consider the matrix $E_{i j} \in M_{n \times n}(\mathbb{C})$ with 1 in position $i j$ and 0 s everywhere else.
(a) For $i \neq j$ show that $I_{n}+E_{i j} \in \mathrm{GL}_{n}(\mathbb{C})$.
(b) For a general matrix $X \in \mathrm{GL}_{n}(\mathbb{C})$ compute $X E_{i j}$ and $E_{i j} X$ and show that $Z\left(\mathrm{GL}_{n}(\mathbb{C})\right)=\mathbb{C}^{\times} I_{n}$.

Proof. (a): Since $i \neq j$ the matrix $E_{i j}$ is either upper or lower triangular with 0 s on the diagonal. Then homework 2 implies that $E_{i j}$ is nilpotent and so $I_{n}+E_{i j}$ is invertible by homework 1.
(b): If $X=\left(x_{i j}\right) \in Z\left(\mathrm{GL}_{n}(\mathbb{R})\right)$ then $\left(I_{n}+E_{i j}\right) X=X\left(I_{n}+E_{i j}\right)$ as $I n+E_{i j} \in \mathrm{GL}_{n}(\mathbb{R})$ from part (a). Breaking up parantheses we get $X E_{i j}=E_{i j} X$. But $X E_{i j}$ is the matrix with 0s everywhere except on the $j$-th column where the entries are $x_{1 i}, x_{2 i}, \ldots, x_{n i}$, and $E_{i j} X$ is the matrix with 0 s everywhere except on the $j$-th row where the entries are $x_{1 j}, x_{2 j}, \ldots, x_{n j}$. Since these two matrices must be equal we deduce that $x_{a j}=0$ whenever $a \neq j$ and $x_{i b}=0$ whenever $b \neq i$ and that $x_{i i}=x_{j j}$. Letting $i$ and $j$ be any two distinct indices implies that $X$ must be a scalar matrix.
Clearly any scalar matrix commutes with any other matrix and so we deduce that $Z\left(\mathrm{GL}_{n}(\mathbb{C})\right)=$ $\mathbb{C}^{\times} I_{n}$.

