Math 30810 Honors Algebra 3 Homework 4

Andrei Jorza

Due Thursday, September 22

Do any 8 of the following questions. Artin a.b.c means chapter a, section b, exercise c.

1. Artin 2.5.5

Proof. Note that $\begin{pmatrix} A & B \\ D \end{pmatrix} \begin{pmatrix} A' & B' \\ D' \end{pmatrix} = \begin{pmatrix} AA' & AB' + BD' \\ DD' \end{pmatrix}$ and $\begin{pmatrix} A & B \\ D \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & -A^{-1}BD^{-1} \\ D^{-1} \end{pmatrix}$. Therefore H is a subgroup. Let $f: M \to \operatorname{GL}_r(\mathbb{R})$ be the map sending M to A. By inspecting the formulas we immediately see that $f(M^{-1}) = f(M)^{-1}$ and f(MM') = f(M)f(M') and so f is a homomorphism. It's kernel is the subgroup of matrices of the form $\begin{pmatrix} I_r & B \\ D \end{pmatrix}$.

 $2. \ \mathrm{Artin} \ 2.6.7$

Proof. Note that if $x = gag^{-1}$ and $y = gbg^{-1}$ then $xy^{-1} = gag^{-1}(gbg^{-1})^{-1} = gag^{-1}gbg^{-1} = gabg^{-1} \in gHg^{-1}$ and so gHg^{-1} is closed under division which implies it is a subgroup.

3. Artin 2.6.9

Proof. Consider the map $f: G \to G^{\circ}$ given by $f(g) = g^{-1}$. It is a bijection of sets as $g^{-1} = 1$ iff g = 1 and $g^{-1} = h^{-1}$ iff g = h. Moreover,

$$f(gh) = (gh)^{-1} = h^{-1}g^{-1} = g^{-1} * h^{-1} = f(g) * f(h)$$

and so f is a homomorphism.

4. Suppose H is a subgroup of a group G. Show that H is normal in G if and only if for all $g \in G$, $gHg^{-1} \subset H$. (In class we required $gHg^{-1} = H$.)

Proof. We need to show that in fact $gHg^{-1} = H$. Pick $h \in H$. Then $g^{-1}hg \in g^{-1}Hg \subset H$ by assumption. But $h = g(g^{-1}hg)g^{-1} \in gHg^{-1}$ and so we conclude that $H \subset gHg^{-1}$.

- 5. Let G be a group. Recall that $\operatorname{End}(G)$ is the set of homomorphisms $f: G \to G$ and $\operatorname{Aut}(G) \subset \operatorname{End}(G)$ is the subset of those homomorphisms which are isomorphisms.
 - (a) Show that usual composition of functions yields an associative composition law on End(G) with identity given by the identity function. (There is something you need to check here!)
 - (b) Show that $f \in \text{End}(G)$ has an inverse with respect to the composition law iff $f \in \text{Aut}(G)$ and conclude that Aut(G) is a group.

Proof. (a): Composition on functions on a set X is associative and has the identity map as an identity. What we need to check is that if we compose two homomorphisms we also get a homomorphism. But if $f, g \in \text{End}(G)$ then f(g(xy)) = f(g(x)g(y)) = f(g(x))f(g(y)) as each of f and g is a homomorphism. Therefore $f \circ g$, which a priori is only a function, is also a homomorphism so composition yields a composition law on End(G).

(b): Suppose f admits a homomorphism inverse g. Then $f \circ g =_G$ and $g \circ f =_G$. From the former we deduce that f is surjective as Im $f \circ g \subset$ Im f and from the second we deduce that f is injective as ker $f \subset \ker g \circ f$. Thus f is bijective and so f is an isomorphism. If, reciprocally, f is bijective then it has a set theoretic inverse f^{-1} . We need to show that this is an inverse in End(G), i.e., that f^{-1} is also a homomorphism. Pick $x, y \in G$. Since f is surjective there exist $a, b \in G$ such that f(a) = x and f(b) = y. Then $f^{-1}(xy) = f^{-1}(f(a)f(b)) = f^{-1}(f(ab)) = ab = f^{-1}(x)f^{-1}(y)$ so f^{-1} is also a homomorphism.

Therefore Aut(G) is the set of elements in End(G) which have an inverse and so, by the previous homework, Aut(G) is a group.

- 6. Let G be a group. Recall from class that if $g \in G$ then the map $\phi_g(x) = gxg^{-1}$ is a homomorphism $\phi_g \in \text{End}(G)$.
 - (a) Show that in fact $\phi_g \in \operatorname{Aut}(G)$.
 - (b) Show that the map $\Phi: G \to \operatorname{Aut}(G)$ given by $\Phi(g) = \phi_g$ is a group homomorphism.
 - (c) (Optional) Show that ker $\Phi = Z(G)$, the center of the group G.

Proof. (a): In class we showed that ϕ_g is an endomorphism. Now ker $\phi_g = \{x \mid gxg^{-1} = 1\} = 1$ and so ϕ_g is injective. Moreover, $\phi_g(g^{-1}xg) = x$ for every $x \in G$ and so ϕ_g is surjective. Thus ϕ_g is an isomorphism.

(b): We need to check that $\Phi(gh) = \Phi(g)\Phi(h)$, i.e., that $\phi_{gh} = \phi_g \circ \phi_h$. But $\phi_g \circ \phi_h(x) = \phi_g(hxh^{-1}) = ghxh^{-1}g^{-1} = \phi_{gh}(x)$ as $(gh)^{-1} = h^{-1}g^{-1}$.

(c): ker $\Phi = \{g \in G \mid \phi_g =_G\}$ and $\phi_g =_G$ iff $gxg^{-1} = x$ for all $x \in G$, i.e., iff gx = xg for all $x \in G$. But this is Z(G) by definition.

7. Show that Inn(G), defined as the set of all inner automorphism $\{\phi_g \mid g \in G\}$, is a normal subgroup of Aut(G). [Hint: Use the previous problem.]

Proof. By definition $\text{Inn}(G) = \text{Im} \Phi$ is the image of the homomorphism $\Phi : G \to \text{Aut}(G)$ defined in the previous problem. Immediately we deduce that Inn(G) is a subgroup of Aut(G). We need to check that it is normal. Suppose $f \in \text{Aut}(G)$ and $\phi_q \in \text{Inn}(G)$. Let's compute $f\phi_q f^{-1}$. For $x \in G$

and so $f\phi_g f^{-1} = \phi_{f(g)}$ which immediately shows that $f \operatorname{Inn}(G) f^{-1} \subset \operatorname{Inn}(G)$. We deduce that $\operatorname{Inn}(G)$ is normal in $\operatorname{Aut}(G)$.

8. Show that if G is a group of order 4 then either it is cyclic or it is isomorphic to the Klein 4-group V.

Proof. G is a group so it contains 1, and let $x \in G - \{1\}$. If x has order 4 then $G = \langle x \rangle$ is cyclic from the proposition we proved in class.

Let's suppose this is not the case, which implies that $\operatorname{ord}(x) < 4$ as $\langle x \rangle \subset G$. Let $y \in G - \langle x \rangle$. If $\operatorname{ord}(x) = 3$ then $G = \{1, x, x^2, y\}$ and xy cannot be in G anymore as y is not in $\{1, x, x^2\}$. This is impossible and therefore $\operatorname{ord}(x) = 2$ (it cannot have order 1 as $x \neq 1$). Then G contains 1, x, y and therefore also xy. As x has order 2, $x^{-1} = x$ and so $xy \notin \{1, x, y\}$. This implies that $G = \{1, x, y, xy\}$.

Now the map $f: G \to V$ sending x to $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ and $y \mapsto \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ is an isomorphism between G and V simply by inspection.

9. Show that $\langle (123) \rangle$ is normal in S_3 but the subgroups $\langle (12) \rangle$, $\langle (13) \rangle$ and $\langle (23) \rangle$ are not normal in S_3 .

Proof. $\langle (123) \rangle = A_3$ is normal in S_3 as A_n is always normal in S_n . Now $(123)(12)(123)^{-1} = (13)$, $(123)^{-1}(13)(123) = (12)$ and $(123)(13)(123)^{-1} = (23)$ and so the subgroups generated by the three transposition are not normal in S_3 . □

10. Show that in S_n , $(i_1, \ldots, i_k) = (i_1, i_2)(i_2, i_3) \cdots (i_{k-1}, i_k)$ for any cycle (i_1, \ldots, i_k) .

Proof. Let $c = (i_1, \ldots, i_k)$ and $\tau_s = (i_s, i_{s+1})$. To check that $c = \tau_1 \cdots \tau_{k-1}$ it suffices to check it on each integer r between 1 and n.

If $r \notin \{i_1, \ldots, i_k\}$ then c(r) = r and $\tau_s(r) = r$ for all s. Thus $c(r) = \prod \tau_s(r)$ as desired.

Suppose $r = i_m$. Then $\tau_s(i_m) = i_m$ if s > m, $\tau_m(i_m) = i_{m+1}$ and $\tau_s(i_m) = i_m$ if s < m-1. This means that for $m \le k-1$

$$\tau_1 \cdots \tau_{k-1}(i_m) = \tau_1 \cdots \tau_m(i_m) = \tau_1 \cdots \tau_{m-1}(i_{m+1}) = i_{m+1} = c(i_m)$$

and if m = k then

$$\tau_1 \dots \tau_{k-1}(i_k) = \tau_1 \dots \tau_{k-2}(i_{k-1}) = \dots \tau_1(i_2) = i_1 = c(i_k)$$

- 11. (This is a useful problem) For $1 \leq i, j \leq n$ consider the matrix $E_{ij} \in M_{n \times n}(\mathbb{C})$ with 1 in position ij and 0s everywhere else.
 - (a) For $i \neq j$ show that $I_n + E_{ij} \in \mathrm{GL}_n(\mathbb{C})$.
 - (b) For a general matrix $X \in \operatorname{GL}_n(\mathbb{C})$ compute XE_{ij} and $E_{ij}X$ and show that $Z(\operatorname{GL}_n(\mathbb{C})) = \mathbb{C}^{\times}I_n$.

Proof. (a): Since $i \neq j$ the matrix E_{ij} is either upper or lower triangular with 0s on the diagonal. Then homework 2 implies that E_{ij} is nilpotent and so $I_n + E_{ij}$ is invertible by homework 1.

(b): If $X = (x_{ij}) \in Z(\operatorname{GL}_n(\mathbb{R}))$ then $(I_n + E_{ij})X = X(I_n + E_{ij})$ as $In + E_{ij} \in \operatorname{GL}_n(\mathbb{R})$ from part (a). Breaking up parantheses we get $XE_{ij} = E_{ij}X$. But XE_{ij} is the matrix with 0s everywhere except on the *j*-th column where the entries are $x_{1i}, x_{2i}, \ldots, x_{ni}$, and $E_{ij}X$ is the matrix with 0s everywhere except on the *j*-th row where the entries are $x_{1j}, x_{2j}, \ldots, x_{nj}$. Since these two matrices must be equal we deduce that $x_{aj} = 0$ whenever $a \neq j$ and $x_{ib} = 0$ whenever $b \neq i$ and that $x_{ii} = x_{jj}$. Letting *i* and *j* be any two distinct indices implies that X must be a scalar matrix.

Clearly any scalar matrix commutes with any other matrix and so we deduce that $Z(GL_n(\mathbb{C})) = \mathbb{C}^{\times} I_n$.