Math 30810 Honors Algebra 3 Homework 5

Andrei Jorza

Due Thursday, September 29

Do any 8 of the following questions. Artin a.b.c means chapter a, section b, exercise c.

1. Let G be a group and $g \in G$. Suppose $g^{m}=e$ and $g^{n}=e$ where m and n are coprime integers. Show that $g=e$.

Proof. Bezout implies there exist p and q integers such that $p m+q n=1$. Then $g=\left(g^{m}\right)^{p}\left(g^{n}\right)^{q}=1$.
2. Let G be a group.
(a) Assume that H and K are subgroups and $|H|=|K|=p$ is a prime number. Show that either $H=K$ or $H \cap K=\{e\}$.
(b) Let G be a group and H_{1}, \ldots, H_{k} be distinct subgroups of G. Suppose that each group H_{i} has order p, a fixed prime number. Show that $H_{1} \cup \ldots \cup H_{k}$ has exactly $(p-1) k+1$ elements.

Proof. (a): From class $H \cap K$ is always a group, and will be a subgroup of H and K. The order of a subgroup divides the order of the group containing it so $|H \cap K|||H|,|K|$ so either $| H \cap K \mid=1$ in which case $H \cap K=\{e\}$ or $|H \cap K|=p$ in which case $H \cap K \subset H, K$ all have the same cardinality to $H=K=H \cap K$.
(b): From part (a) we know that if $H_{i} \neq H_{j}$ then $H_{i} \cap H_{j}=\{e\}$. In the union $H_{1} \cup \ldots \cup H_{k}$, the only element that appears in more than one subgroup is e, which appears in all of them. Thus the total number of elements is $1+(p-1) k$, each $H_{i}-\{e\}$ contributing $p-1$ elements to the union, and e being the +1 .
3. Suppose G is a finite group and p is a prime number such that every element $g \in G-\{e\}$ has order p. Show that $p-1| | G \mid-1$. [Hint: use exercise 2.]

Proof. There's a number of ways to write this. Here's the easiest: for $g \in G-\{e\}$ let $H_{g}=\langle g\rangle=$ $\left\{e, g, g^{2}, \ldots, g^{p-1}\right\}$ as $\operatorname{ord}(g)=p$. Pick $g_{1} \in G-\{e\}$, then a $g_{2} \in G-H_{g_{1}}$, then $g_{3} \in G-\left(H_{g_{1}} \cup H_{g_{2}}\right)$ and so on until there are no more elements to choose, i.e., $G=H_{g_{1}} \cup H_{g_{2}} \cup \ldots \cup H_{g_{k}}$. By construction, $H_{g_{i}} \neq H_{g_{j}}$ when $g_{i} \neq g_{j}$ and each $H_{g_{i}}$ is cyclic of order p. Exercise 2 then shows that $|G|=$ $\left|H_{g_{1}} \cup \ldots \cup H_{g_{k}}\right|=(p-1) k+1$ and so $p-1| | G \mid-1$.
4. Let G be a group and suppose G contains an element of order n. Show that for every divisor $d \mid n$ the group G contains an element of order d. Deduce that if G has order p^{n} for some prime p, G contains an element of order p.

Proof. From class we know that if g has order n then $g^{n / d}$ has order $n /(n, n / d)=n /(n / d)=d$.
If G has order p^{n} pick any nontrivial element $g \in G-\{e\}$. Then $\operatorname{ord}(g)\left||G|=p^{n}\right.$ so ord $(g)=p^{k}$ for some $k \geq 1$. Since $p \mid p^{k}$, the first part shows that G contains an element of order p.
5. Let $p>q$ be prime numbers such that $q-1 \nmid p-1$, and suppose G is a group of order exactly $p q$. (E.g., G could have order 35.) Show that G contains an element of order p and an element of order q. [Hint: you may find exercises 3 and 4 useful.]

Proof. Since $p>q, p-1 \nmid q-1$ as well. If $g \in G-\{e\}$, $\operatorname{ord}(g) \mid p q$ so $\operatorname{ord}(g) \in\{p, q, p q\}$ (since $g \neq e, \operatorname{ord}(g) \neq 1)$. If $\operatorname{ord}(g)=p q$ then Exercise 4 implies the desired statement. We now argue by contradiction. Suppose G doesn't contain an element of order q ((the case of G not containing an element of order p being identical to this one). Then every $g \in G-\{e\}$ has order p (not 1 , not q and not $p q$). Exercise 3 then implies that $p-1| | G \mid-1=p q-1$. But then $p-1 \mid(p-1) q+q-1$ and so $p-1 \mid q-1$ which is impossible.
6. (I encourage you to do this problem) Let $G=\mathrm{GL}_{2}(\mathbb{R})$ and H the subgroup of upper triangular matrices. Show that a complete set of representatives of G / H is given by the matrices

$$
\left\{\left.\left(\begin{array}{ll}
1 & 0 \\
x & 1
\end{array}\right) \right\rvert\, x \in \mathbb{R}\right\} \sqcup\left\{\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\}
$$

(The proper interpretation of this is that the first set of matrices represents the real line and the antidiagonal matrix represents the "point at infinity", the quotient G / H being the projective line. This is important in representation theory.)

Proof. First, we check that every matrix is in one of these cosets.
If $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is upper triangular then it is in the coset I_{2} so let's assume now that $c \neq 0$. The coset $g H$ contains $g\left(\begin{array}{ll}x & y \\ & z\end{array}\right)=\left(\begin{array}{ll}a x & a y+b z \\ c x & c y+d z\end{array}\right)$. If $a \neq 0$ we can take $x=1 / a$ and we can solve for y and z such that $a y+b z=0$ and $c y+d z=1$. Thus the coset $g H$ contains the representative $\left(\begin{array}{cc}1 & 0 \\ c / a & 1\end{array}\right)$ as desired. If $a=0$, since $c \neq 0$ we can solve the system $b z=1, c x=1$ and $c y+d z=0$ to get that $g H$ contains the representative $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
Finally, we need to show that no two representatives in the list lie in the same coset. But $g H=h H$ iff $g h^{-1} \in H$ and we notice that

$$
\left(\begin{array}{ll}
1 & \\
x & 1
\end{array}\right)\left(\begin{array}{ll}
1 & \\
y & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
1 & \\
x-y & 1
\end{array}\right) \notin H
$$

and

$$
\left(\begin{array}{ll}
1 & \\
x & 1
\end{array}\right)\left(\begin{array}{ll}
& 1 \\
1 &)^{-1}=\left(\begin{array}{ll}
& 1 \\
1 & x
\end{array}\right) \notin H \text { } . ~
\end{array}\right.
$$

7. Artin 2.8 .8 on page 73 .

Proof. From a previous exercise G contains an element g of order 5 as $|G|=5^{2}$. Then $\langle g\rangle$ is a subgroup of order 5. If G is not cyclic then there is no element of order 25 . Pick $h \in G-\langle g\rangle$. Since ord $(h) \mid 25$ and the order is not 25 or 1 , it follows that $\operatorname{ord}(h)=5$. But then $\langle h\rangle$ is another subgroup of order 5 , contradicting the assumption.
8. Artin 2.8 .10 on page 73 .

Proof. For the counterexample look at $\langle(12)\rangle$ in S_{3}, of index 3 but not normal from the previous homework.
Supose $[G: H]=2$. Then $G=H \sqcup c H$ is the disjoint union of the two cosets. Pick $g \in G$. We need to show that $g H g^{-1} \subset H$. Either $g \in H$ or $g \in c H$. If $g \in H$ then immediately $g H g^{-1} \subset H$ as H is a group. Otherwise $g=c h$ for some $g \in H$ and so $g H g^{-1}=c h H h^{-1} c^{-1} \subset c H c^{-1}$. If $x \in H$ look at $c x c^{-1} \in G=H \sqcup c H$. As $c \notin H$ it follows that $c x c^{-1} \notin c H$ and so $c x c^{-1} \in H$ as desired.
9. Artin 2.9 .3 on page 73 .

Proof. If $a=\overline{a_{d} a_{d-1} \ldots a_{1} a_{0}}(10)$ then $a=\sum a_{i} 10^{i}=\sum a_{i}+\sum a_{i}\left(10^{i}-1\right)=\sum a_{i}+\sum a_{i} 99 \ldots 9$.
10. Artin 2.8 .6 on page 73 .

Proof. We know that ker f is a subgroup of G so $a=|\operatorname{ker} f|$ divides 18 and $b=\operatorname{Im} f$ is a subgroup of G^{\prime} so $|\operatorname{Im} f|$ divides 15 . At the same time the first isomorphism theorem implies that $|G / \operatorname{ker} f|=|\operatorname{Im} f|$ and so \mid ker $f||\operatorname{Im} f|=|G|=18$. So we have $a b=18$ with $b| 15$. Thus $b \mid(15,18)=3$. By assumption $b \neq 1$ as f is not trivial and so $b=3$. Then $a=6$.
11. (This was one is fun and jocular) Artin 2.M.16 on page 77. Artin says he learned of this from a paper of Mestre, Schoof, Washington and Zagier. The paper starts with the "motto": Ah! La recherche. Du temps perdu.

Proof. Yeah, I'm not writing this up. The group is trivial.

