
Math 30810 Honors Algebra 3

Homework 5

Andrei Jorza

Due Thursday, September 29

Do any 8 of the following questions. Artin a.b.c means chapter a, section b, exercise c.

1. Let G be a group and g ∈ G. Suppose gm = e and gn = e where m and n are coprime integers. Show
that g = e.

Proof. Bezout implies there exist p and q integers such that pm+qn = 1. Then g = (gm)p(gn)q = 1.

2. Let G be a group.

(a) Assume that H and K are subgroups and |H| = |K| = p is a prime number. Show that either
H = K or H ∩K = {e}.

(b) Let G be a group and H1, . . . ,Hk be distinct subgroups of G. Suppose that each group Hi has
order p, a fixed prime number. Show that H1 ∪ . . . ∪Hk has exactly (p− 1)k + 1 elements.

Proof. (a): From class H ∩K is always a group, and will be a subgroup of H and K. The order of a
subgroup divides the order of the group containing it so |H ∩K| | |H|, |K| so either |H ∩K| = 1 in
which case H ∩K = {e} or |H ∩K| = p in which case H ∩K ⊂ H,K all have the same cardinality to
H = K = H ∩K.

(b): From part (a) we know that if Hi 6= Hj then Hi ∩Hj = {e}. In the union H1 ∪ . . .∪Hk, the only
element that appears in more than one subgroup is e, which appears in all of them. Thus the total
number of elements is 1 + (p−1)k, each Hi−{e} contributing p−1 elements to the union, and e being
the +1.

3. Suppose G is a finite group and p is a prime number such that every element g ∈ G−{e} has order p.
Show that p− 1 | |G| − 1. [Hint: use exercise 2.]

Proof. There’s a number of ways to write this. Here’s the easiest: for g ∈ G − {e} let Hg = 〈g〉 =
{e, g, g2, . . . , gp−1} as ord(g) = p. Pick g1 ∈ G− {e}, then a g2 ∈ G−Hg1 , then g3 ∈ G− (Hg1 ∪Hg2)
and so on until there are no more elements to choose, i.e., G = Hg1 ∪Hg2 ∪ . . .∪Hgk . By construction,
Hgi 6= Hgj when gi 6= gj and each Hgi is cyclic of order p. Exercise 2 then shows that |G| =
|Hg1 ∪ . . . ∪Hgk | = (p− 1)k + 1 and so p− 1 | |G| − 1.

4. Let G be a group and suppose G contains an element of order n. Show that for every divisor d | n the
group G contains an element of order d. Deduce that if G has order pn for some prime p, G contains
an element of order p.

Proof. From class we know that if g has order n then gn/d has order n/(n, n/d) = n/(n/d) = d.

If G has order pn pick any nontrivial element g ∈ G− {e}. Then ord(g) | |G| = pn so ord(g) = pk for
some k ≥ 1. Since p | pk, the first part shows that G contains an element of order p.
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5. Let p > q be prime numbers such that q − 1 - p − 1, and suppose G is a group of order exactly pq.
(E.g., G could have order 35.) Show that G contains an element of order p and an element of order q.
[Hint: you may find exercises 3 and 4 useful.]

Proof. Since p > q, p − 1 - q − 1 as well. If g ∈ G − {e}, ord(g) | pq so ord(g) ∈ {p, q, pq} (since
g 6= e, ord(g) 6= 1). If ord(g) = pq then Exercise 4 implies the desired statement. We now argue by
contradiction. Suppose G doesn’t contain an element of order q ((the case of G not containing an
element of order p being identical to this one). Then every g ∈ G− {e} has order p (not 1, not q and
not pq). Exercise 3 then implies that p− 1 | |G| − 1 = pq − 1. But then p− 1 | (p− 1)q + q − 1 and so
p− 1 | q − 1 which is impossible.

6. (I encourage you to do this problem) Let G = GL2(R) and H the subgroup of upper triangular matrices.
Show that a complete set of representatives of G/H is given by the matrices{(

1 0
x 1

)
| x ∈ R

}
t
{(

0 1
1 0

)}
(The proper interpretation of this is that the first set of matrices represents the real line and the
antidiagonal matrix represents the “point at infinity”, the quotient G/H being the projective line.
This is important in representation theory.)

Proof. First, we check that every matrix is in one of these cosets.

If g =

(
a b
c d

)
is upper triangular then it is in the coset I2 so let’s assume now that c 6= 0. The coset

gH contains g

(
x y

z

)
=

(
ax ay + bz
cx cy + dz

)
. If a 6= 0 we can take x = 1/a and we can solve for y and z

such that ay + bz = 0 and cy + dz = 1. Thus the coset gH contains the representative

(
1 0
c/a 1

)
as

desired. If a = 0, since c 6= 0 we can solve the system bz = 1, cx = 1 and cy + dz = 0 to get that gH

contains the representative

(
0 1
1 0

)
.

Finally, we need to show that no two representatives in the list lie in the same coset. But gH = hH
iff gh−1 ∈ H and we notice that(

1
x 1

)(
1
y 1

)−1
=

(
1

x− y 1

)
/∈ H

and (
1
x 1

)(
1

1

)−1
=

(
1

1 x

)
/∈ H

7. Artin 2.8.8 on page 73.

Proof. From a previous exercise G contains an element g of order 5 as |G| = 52. Then 〈g〉 is a subgroup
of order 5. If G is not cyclic then there is no element of order 25. Pick h ∈ G− 〈g〉. Since ord(h) | 25
and the order is not 25 or 1, it follows that ord(h) = 5. But then 〈h〉 is another subgroup of order 5,
contradicting the assumption.

8. Artin 2.8.10 on page 73.
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Proof. For the counterexample look at 〈(12)〉 in S3, of index 3 but not normal from the previous
homework.

Supose [G : H] = 2. Then G = H t cH is the disjoint union of the two cosets. Pick g ∈ G. We need
to show that gHg−1 ⊂ H. Either g ∈ H or g ∈ cH. If g ∈ H then immediately gHg−1 ⊂ H as H is
a group. Otherwise g = ch for some g ∈ H and so gHg−1 = chHh−1c−1 ⊂ cHc−1. If x ∈ H look at
cxc−1 ∈ G = H t cH. As c /∈ H it follows that cxc−1 /∈ cH and so cxc−1 ∈ H as desired.

9. Artin 2.9.3 on page 73.

Proof. If a = adad−1 . . . a1a0(10) then a =
∑

ai10i =
∑

ai +
∑

ai(10i − 1) =
∑

ai +
∑

ai99 . . . 9.

10. Artin 2.8.6 on page 73.

Proof. We know that ker f is a subgroup of G so a = | ker f | divides 18 and b = Im f is a subgroup of G′

so | Im f | divides 15. At the same time the first isomorphism theorem implies that |G/ ker f | = | Im f |
and so | ker f || Im f | = |G| = 18. So we have ab = 18 with b | 15. Thus b | (15, 18) = 3. By assumption
b 6= 1 as f is not trivial and so b = 3. Then a = 6.

11. (This was one is fun and jocular) Artin 2.M.16 on page 77. Artin says he learned of this from a paper
of Mestre, Schoof, Washington and Zagier. The paper starts with the “motto”: Ah! La recherche. Du
temps perdu.

Proof. Yeah, I’m not writing this up. The group is trivial.
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