Math 30810 Honors Algebra 3 Homework 5

Andrei Jorza

Due Thursday, September 29

Do any 8 of the following questions. Artin a.b.c means chapter a, section b, exercise c.

1. Let G be a group and $g \in G$. Suppose $g^m = e$ and $g^n = e$ where m and n are coprime integers. Show that g = e.

Proof. Bezout implies there exist p and q integers such that pm+qn=1. Then $q=(q^m)^p(q^n)^q=1$. \Box

- 2. Let G be a group.
 - (a) Assume that H and K are subgroups and |H| = |K| = p is a prime number. Show that either H = K or $H \cap K = \{e\}$.
 - (b) Let G be a group and H_1, \ldots, H_k be distinct subgroups of G. Suppose that each group H_i has order p, a fixed prime number. Show that $H_1 \cup \ldots \cup H_k$ has exactly (p-1)k+1 elements.

Proof. (a): From class $H \cap K$ is always a group, and will be a subgroup of H and K. The order of a subgroup divides the order of the group containing it so $|H \cap K| | |H|, |K|$ so either $|H \cap K| = 1$ in which case $H \cap K = \{e\}$ or $|H \cap K| = p$ in which case $H \cap K \subset H, K$ all have the same cardinality to $H = K = H \cap K$.

(b): From part (a) we know that if $H_i \neq H_j$ then $H_i \cap H_j = \{e\}$. In the union $H_1 \cup \ldots \cup H_k$, the only element that appears in more than one subgroup is e, which appears in all of them. Thus the total number of elements is 1 + (p-1)k, each $H_i - \{e\}$ contributing p-1 elements to the union, and e being the +1.

3. Suppose G is a finite group and p is a prime number such that every element $g \in G - \{e\}$ has order p. Show that $p - 1 \mid |G| - 1$. [Hint: use exercise 2.]

Proof. There's a number of ways to write this. Here's the easiest: for $g \in G - \{e\}$ let $H_g = \langle g \rangle = \{e, g, g^2, \ldots, g^{p-1}\}$ as $\operatorname{ord}(g) = p$. Pick $g_1 \in G - \{e\}$, then a $g_2 \in G - H_{g_1}$, then $g_3 \in G - (H_{g_1} \cup H_{g_2})$ and so on until there are no more elements to choose, i.e., $G = H_{g_1} \cup H_{g_2} \cup \ldots \cup H_{g_k}$. By construction, $H_{g_i} \neq H_{g_j}$ when $g_i \neq g_j$ and each H_{g_i} is cyclic of order p. Exercise 2 then shows that $|G| = |H_{g_1} \cup \ldots \cup H_{g_k}| = (p-1)k + 1$ and so $p-1 \mid |G| - 1$.

4. Let G be a group and suppose G contains an element of order n. Show that for every divisor $d \mid n$ the group G contains an element of order d. Deduce that if G has order p^n for some prime p, G contains an element of order p.

Proof. From class we know that if g has order n then $g^{n/d}$ has order n/(n, n/d) = n/(n/d) = d.

If G has order p^n pick any nontrivial element $g \in G - \{e\}$. Then $\operatorname{ord}(g) \mid |G| = p^n$ so $\operatorname{ord}(g) = p^k$ for some $k \ge 1$. Since $p \mid p^k$, the first part shows that G contains an element of order p. \Box

5. Let p > q be prime numbers such that $q - 1 \nmid p - 1$, and suppose G is a group of order exactly pq. (E.g., G could have order 35.) Show that G contains an element of order p and an element of order q. [Hint: you may find exercises 3 and 4 useful.]

Proof. Since p > q, $p - 1 \nmid q - 1$ as well. If $g \in G - \{e\}$, $\operatorname{ord}(g) \mid pq$ so $\operatorname{ord}(g) \in \{p, q, pq\}$ (since $g \neq e$, $\operatorname{ord}(g) \neq 1$). If $\operatorname{ord}(g) = pq$ then Exercise 4 implies the desired statement. We now argue by contradiction. Suppose G doesn't contain an element of order q ((the case of G not containing an element of order p being identical to this one). Then every $g \in G - \{e\}$ has order p (not 1, not q and not pq). Exercise 3 then implies that $p - 1 \mid |G| - 1 = pq - 1$. But then $p - 1 \mid (p - 1)q + q - 1$ and so $p - 1 \mid q - 1$ which is impossible.

6. (I encourage you to do this problem) Let $G = GL_2(\mathbb{R})$ and H the subgroup of upper triangular matrices. Show that a complete set of representatives of G/H is given by the matrices

$$\left\{ \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix} \mid x \in \mathbb{R} \right\} \sqcup \left\{ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}$$

(The proper interpretation of this is that the first set of matrices represents the real line and the antidiagonal matrix represents the "point at infinity", the quotient G/H being the projective line. This is important in representation theory.)

Proof. First, we check that every matrix is in one of these cosets.

If $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is upper triangular then it is in the coset I_2 so let's assume now that $c \neq 0$. The coset gH contains $g \begin{pmatrix} x & y \\ z \end{pmatrix} = \begin{pmatrix} ax & ay + bz \\ cx & cy + dz \end{pmatrix}$. If $a \neq 0$ we can take x = 1/a and we can solve for y and z such that ay + bz = 0 and cy + dz = 1. Thus the coset gH contains the representative $\begin{pmatrix} 1 & 0 \\ c/a & 1 \end{pmatrix}$ as desired. If a = 0, since $c \neq 0$ we can solve the system bz = 1, cx = 1 and cy + dz = 0 to get that gH contains the representative $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Finally, we need to show that no two representatives in the list lie in the same coset. But gH = hH iff $gh^{-1} \in H$ and we notice that

$$\begin{pmatrix} 1 \\ x & 1 \end{pmatrix} \begin{pmatrix} 1 \\ y & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 \\ x - y & 1 \end{pmatrix} \notin H$$
$$\begin{pmatrix} 1 \\ x & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 \\ 1 & x \end{pmatrix} \notin H$$

7. Artin 2.8.8 on page 73.

and

Proof. From a previous exercise G contains an element g of order 5 as $|G| = 5^2$. Then $\langle g \rangle$ is a subgroup of order 5. If G is not cyclic then there is no element of order 25. Pick $h \in G - \langle g \rangle$. Since $\operatorname{ord}(h) \mid 25$ and the order is not 25 or 1, it follows that $\operatorname{ord}(h) = 5$. But then $\langle h \rangle$ is another subgroup of order 5, contradicting the assumption.

8. Artin 2.8.10 on page 73.

Proof. For the counterexample look at $\langle (12) \rangle$ in S_3 , of index 3 but not normal from the previous homework.

Suppose [G:H] = 2. Then $G = H \sqcup cH$ is the disjoint union of the two cosets. Pick $g \in G$. We need to show that $gHg^{-1} \subset H$. Either $g \in H$ or $g \in cH$. If $g \in H$ then immediately $gHg^{-1} \subset H$ as H is a group. Otherwise g = ch for some $g \in H$ and so $gHg^{-1} = chHh^{-1}c^{-1} \subset cHc^{-1}$. If $x \in H$ look at $cxc^{-1} \in G = H \sqcup cH$. As $c \notin H$ it follows that $cxc^{-1} \notin cH$ and so $cxc^{-1} \in H$ as desired. \Box

9. Artin 2.9.3 on page 73.

Proof. If $a = \overline{a_d a_{d-1} \dots a_1 a_0}_{(10)}$ then $a = \sum a_i 10^i = \sum a_i + \sum a_i (10^i - 1) = \sum a_i + \sum a_i 99 \dots 9$. \Box

10. Artin 2.8.6 on page 73.

Proof. We know that ker f is a subgroup of G so $a = |\ker f|$ divides 18 and $b = \operatorname{Im} f$ is a subgroup of G' so $|\operatorname{Im} f|$ divides 15. At the same time the first isomorphism theorem implies that $|G/\ker f| = |\operatorname{Im} f|$ and so $|\ker f| |\operatorname{Im} f| = |G| = 18$. So we have ab = 18 with b | 15. Thus b | (15, 18) = 3. By assumption $b \neq 1$ as f is not trivial and so b = 3. Then a = 6.

11. (This was one is fun and jocular) Artin 2.M.16 on page 77. Artin says he learned of this from a paper of Mestre, Schoof, Washington and Zagier. The paper starts with the "motto": Ah! La recherche. Du temps perdu.

Proof. Yeah, I'm not writing this up. The group is trivial.