Math 30810 Honors Algebra 3 Homework 6

Andrei Jorza

Due Thursday, October 6

Do any 8 of the following questions. Artin a.b.c means chapter a, section b, exercise c.

1. Explicit Chinese Remainder Theorem.
(a) Let m and n be coprime integers and let u and v be integers such that $m u+n v=1$ (from Bézout's relation). Show that the system of equations

$$
\left\{\begin{array}{l}
x \equiv a \quad(\bmod m) \\
x \equiv b \quad(\bmod n)
\end{array}\right.
$$

has the unique solution $x \equiv a n v+b m u(\bmod m n)$.
(b) Compute

$$
12^{34^{56^{78}}}(\bmod 90)
$$

[Hint: Use the Chinese Remainder Theorem.] (A bit on notation: the exponent of 56 is 78 , the exponent of 34 is 56^{78}, the exponent of 12 is $34^{56^{78}}$. In particular, this is $\operatorname{NOT}\left(\left(12^{34}\right)^{56}\right)^{78}$.)
2. Artin 2.9.5 on page 73 .
3. Let p be a prime integer. Show that $(p-1)!\equiv-1(\bmod p)$. [Hint: There are two ways to do this. Either (a) decompose the polynomial $X^{p-1}-1 \bmod p$ into linear factors or (b) interpret $(p-1)$! as a product of elements in $(\mathbb{Z} / p \mathbb{Z})^{\times}$.]
4. Artin 2.12 .1 on page 74 .
5. Artin 2.12 .2 on page 75 .
6. Let n be a positive integer and $G=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right) \right\rvert\, a \in(\mathbb{Z} / n \mathbb{Z})^{\times}, b \in \mathbb{Z} / n \mathbb{Z}\right\}$ and $H=\left\{\left.\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right) \right\rvert\, b \in \mathbb{Z} / n \mathbb{Z}\right\}$. Show that G is a group under usual matrix multiplication and H is a normal subgroup of G. (The group G will be a Galois group next semester, so this is a useful problem.)
7. Let G be a finite group and $g \in G$ not the identity. Show that g has order m if and only if the following two conditions are satisfied:
(a) $g^{m}=e$ and
(b) for every prime divisor $p \mid m, g^{m / p} \neq e$.
8. (We will use this exercise in class so try to do it) Suppose G is an abelian group containing an element g of order p^{k+1} where p is a prime and an element h of order $p^{k} m$ where $p \nmid m$. Show that $p^{k+1} m \mid \operatorname{ord}(g h)$.

9-10 (Counts as two problems) Consider the permutations $a_{1}=(12)(34), a_{2}=(13)(24)$ and $a_{3}=(14)(23)$ in S_{4}. Let $X=\left\{a_{1}, a_{2}, a_{3}\right\}$.
(a) If $\sigma \in S_{4}$ show that the inner automorphism $\phi_{\sigma}(x)=\sigma x \sigma^{-1}$ of S_{4} yields a bijective function $\left.\phi_{\sigma}\right|_{X}: X \rightarrow X$. I.e., you need to check that ϕ_{σ} takes X to X and that it is a bijection on X.
(b) For $\sigma \in S_{4}$ define the permutation $c_{\sigma} \in S_{3}$ such that $\phi_{\sigma}\left(a_{1}\right)=a_{c_{\sigma}(1)}, \phi_{\sigma}\left(a_{2}\right)=a_{c_{\sigma}(2)}$ and $\phi_{\sigma}\left(a_{3}\right)=a_{c_{\sigma}(3)}$. Show that the map $q: S_{4} \rightarrow S_{3}$ defined by $q(\sigma)=c_{\sigma}$ is a group homomorphism.
(c) Show that q is surjective. [Hint: It suffices to show that the image of q contains a transposition and a 3 -cycle as we showed in class that S_{3} is generated by two such elements.]
(d) Show that $\operatorname{ker} q=X \cup\{e\}$. [Hint: show that $\operatorname{ker} q$ contains $X \cup\{e\}$ and then use the first isomorphism theorem.]
(e) Conclude that ker q is a normal subgroup of order 4 of the alternating group A_{4}. (If $n=3$ or $n \geq 5$ the only normal subgroups of A_{n} are the trivial subgroup and A_{n} itself, so A_{4} is exceptional.)

