
Math 30810 Honors Algebra 3

Homework 6

Andrei Jorza

Due Thursday, October 6

Do any 8 of the following questions. Artin a.b.c means chapter a, section b, exercise c.

1. Explicit Chinese Remainder Theorem.

(a) Let m and n be coprime integers and let u and v be integers such that mu+nv = 1 (from Bézout’s
relation). Show that the system of equations{

x ≡ a (mod m)

x ≡ b (mod n)

has the unique solution x ≡ anv + bmu (mod mn).

(b) Compute

1234
5678

(mod 90)

[Hint: Use the Chinese Remainder Theorem.] (A bit on notation: the exponent of 56 is 78, the

exponent of 34 is 5678, the exponent of 12 is 3456
78

. In particular, this is NOT ((1234)56)78.)

Proof. (a) That the solution is unique follows from the bijectivity of x mod mn 7→ (x mod m,x
mod n). Finally, mu ≡ 1 (mod n) and nv ≡ 1 (mod n) and so x = anv + bmu ≡ a (mod m) and ≡ b
(mod n) as desired.

(b) It suffices to find the residue mod 9, 2 and 5. First, since 12 is even the giant number is also even so
S ≡ 0 (mod 2). Next, 3 | 12 so certainly 9 | S which means S ≡ 0 (mod 9). We only need to compute

S mod 5. The exponent 3456
78

is certainly a multiple of 4 and so S ≡ 124k ≡ (124)k (mod 5) ≡ 1
(mod 5) because of Fermat’s little theorem. So now we know that S ≡ 0 (mod 18) and S ≡ 1 (mod 5).
Applying part (a) for 5 · 11− 18cdot3 = 1 we get S ≡ 0 · 55− 1 · 18 · 3 ≡ −54 ≡ 36 (mod 90).

2. Artin 2.9.5 on page 73.

Proof. Let’s try to solve the system by hand. From the first equation y ≡ 2x − 1 (mod n). Plugging
this into the second one we get 10x − 3 ≡ 2 (mod n) or 10x ≡ 5 (mod n). Certainly if n is even this
cannot be solved as 5 is odd. If n is odd then 2 is invertible mod n so we could even solve 2x ≡ 1
(mod n) which also satisfies 10x ≡ 5.

Thus the condition on n is that n be odd.

3. Let p be a prime integer. Show that (p − 1)! ≡ −1 (mod p). [Hint: There are two ways to do this.
Either (a) decompose the polynomial Xp−1 − 1 mod p into linear factors or (b) interpret (p − 1)! as
a product of elements in (Z/pZ)×.]

1



Proof. Method 1: From class if a ∈ (Z/pZ)×, ap−1 ≡ 1 (mod p) and so every element in {1, 2, . . . , p−
1} is a root of Xp−1 − 1. Since this is a polynomial of degree p − 1 these are all the roots and so
Xp−1−1 ≡ (X−1)(X−2) . . . (X− (p−1)) (mod p). Subbing X = 0 we get −1 ≡ (−1)(−2) . . . (−(p−
1)) = (−1)p−1(p − 1)! (mod p) which gives (p − 1)! ≡ (−1)p (mod p). This is −1 if p is odd. When
p = 2 this is 1 but then 1 ≡ −1 anyway.

Method 2: Note that x2 ≡ 1 (mod p) is the same as p | x2 − 1 = (x− 1)(x+ 1) so has solutions ±1.
Now (Z/pZ)× = {1, 2, . . . , p− 1} and we can group these elements in pairs (g, g−1) whenever g 6= g−1,
i.e., for g /∈ {−1, 1}. So

(p− 1)! = 1 · (−1) ·
∏

pairs (g,g−1)

g · g−1 ≡ −1 (mod p)

4. Artin 2.12.1 on page 74.

Proof. If H is not normal there exists g ∈ G and h ∈ H such that b−1hb /∈ H. But then pick a = 1
so H · bH contains 1 · bH so if aHbH were a coset it would have to be bH. But it also contains
hb · 1 = hb /∈ bH.

5. Artin 2.12.2 on page 75.

Proof. We already know that the set B of upper triangular matrices forms a group and that when you
multiply two matrices in B, the diagonal elements simply get multiplied in pairs. This implies that H
is a subgroup of B.

Write n(a, b, c) =

1 a b
1 c

1

. The map n(a, b, c) 7→ (a, c) ∈ R×R is a surjective group homomorphism.

Indeed, m(a, b, c)m(a′, b′, c′) = m(a+ a′, b+ b′ + ac′, c+ c′).

Note that the kernel of this homomorphism is exactly K which will then be a normal subgroup of H.
By the first isomorphism theorem, H/K ∼= R× R.

Suppose m(a, b, c) ∈ Z(H). Then m(a, b, c)m(a′, b′, c′) = m(a′, b′, c′)m(a, b, c) for all a′, b′, c′. From
the formula above this implies that ac′ = a′c for all a′ and c′ and therefore that a = c = 0. Thus
K = Z(H).

6. Let n be a positive integer andG =

{(
a b
0 1

)
| a ∈ (Z/nZ)×, b ∈ Z/nZ

}
andH =

{(
1 b
0 1

)
| b ∈ Z/nZ

}
.

Show that G is a group under usual matrix multiplication and H is a normal subgroup of G. (The
group G will be a Galois group next semester, so this is a useful problem.)

Proof. Write m(a, b) for the first matrix. Then m(a, b)−1 = m(a−1,−a−1b) and m(a, b)m(a′, b′) =
m(aa′, ab′ + b) so G is a group. Consider the map f : G → (Z/nZ)× given by f(m(a, b)) = a. The
multiplication formula implies that f is a group homomorphism. Its kernel is exactly H which is
therefore a normal subgroup of G.

7. Let G be a finite group and g ∈ G not the identity. Show that g has order m if and only if the following
two conditions are satisfied:

(a) gm = e and

(b) for every prime divisor p | m, gm/p 6= e.
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Proof. Suppose g has order m. Then m/p < m for every prime divisor p of m so certainly gm/p 6= e.

Reciprocally, suppose g satisfies the two properties. Then ord(g) | m from the first property. Suppose

ord(g) < m. Let p be a prime divisor of m/ ord(g). Then gm/p = gord(g)
m

ord(g)p = e
m

ord(g)p = e
contradicting the second property. Therefore ord(g) = m.

8. (We will use this exercise in class so try to do it) Suppose G is an abelian group containing an element g
of order pk+1 where p is a prime and an element h of order pkm where p - m. Show that pk+1m | ord(gh).

Proof. Let d be the order of gh. Then (gh)d = 1 implies that gd = h−d and so from class we deduce
that

pk+1

(pk+1, d)
= ord(gd) = ord(h−d) =

pkm

(pkm, d)

Write d = pst where p - t. If t ≤ k then (pk+1, d) = ps while (pkm, d) = ps(m, t). Comparing the two
sides we get

pk+1−s = pk−sm/(m, t)

which is impossible as p - m. We deduce that s ≥ k + 1 so (pk+1, d) = pk+1 and (pkm, d) = pk(m, t).
Comparing the two sides again we deduce that 1 = m/(m, t) so m | t. This implies that pk+1m | d =
ord(gh) as desired.

9-10 (Counts as two problems) Consider the permutations a1 = (12)(34), a2 = (13)(24) and a3 = (14)(23)
in S4. Let X = {a1, a2, a3}.

(a) If σ ∈ S4 show that the inner automorphism φσ(x) = σxσ−1 of S4 yields a bijective function
φσ|X : X → X. I.e., you need to check that φσ takes X to X and that it is a bijection on X.

(b) For σ ∈ S4 define the permutation cσ ∈ S3 such that φσ(a1) = acσ(1), φσ(a2) = acσ(2) and
φσ(a3) = acσ(3). Show that the map q : S4 → S3 defined by q(σ) = cσ is a group homomorphism.

(c) Show that q is surjective. [Hint: It suffices to show that the image of q contains a transposition
and a 3-cycle as we showed in class that S3 is generated by two such elements.]

(d) Show that ker q = X ∪ {e}. [Hint: show that ker q contains X ∪ {e} and then use the first
isomorphism theorem.]

(e) Conclude that ker q is a normal subgroup of order 4 of the alternating group A4.

Proof. (a): If σ is a permutation and c1 = (i1,1, . . . , i1,k1), . . . , cr = (ir,1, . . . , ir,kr ) are disjoint cycles
then

σc1 · · · crσ−1 =
∏

σcjσ
−1

where σcjσ
−1 = cσj := (σ(ij,1), . . . , σ(ij,kj )), these conjugate cycles being again disjoint. Indeed, we

only need to check that σcj = cσj σ take iu,v to the same value. If u = j then σcj(ij,v) = σ(ij,v+1) and
cσj σ(ij,v) = σ(ij,v+1) by definition. If u 6= j then σcj(iu,v) = σ(iu,v) whereas cσj σ(iu,v) = σ(iu,v) as cσj
doesn’t do anything to σ(iu,v) when u 6= v.

So this means that φσ takes a product of transpositions again to a product of transpositions and
therefore φσ restricts to a function X → X as desired. Since φσ is an inner automorphism it is
bijective and therefore φσ|X is injective on a set of 3 elements which implies it is also bijective.

(b): We need to check that q(στ) = q(σ)q(τ), i.e., that cστ = cσcτ . We need therefore show that
acστ (i) = acσcτ (i). But the LHS is simply φστ (ai) while the RHS is φσφτ (ai) and the equality follows
from the fact that σ 7→ φσ is a homomorphism from homework 4.

(c): If σ = (23) then from the solution to part (a) we deduce that σa1σ
−1 = a2, σa2σ

−1 = a1 and
σa3σ

−1 = a3. Thus q(σ) = (12). If τ = (123) then again we see that φτ takes a1 to a3, a3 to a2 and
a2 to a1 and so q(τ) = (132). Since Im q ⊂ S3 contains (12) and (132) it must contain all of S3.
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(d): By the first isomorphism theorem |S4|/| ker q| = |S3| and so | ker q| = 4. The recipe from the proof
of part (a) clearly shows that if σ ∈ X ∪{e} then φσ(ai) = ai and so X ∪{e} ⊂ ker q. Comparing sizes
we get that ker q is exactly X ∪ {e}.
(e): ker q is normal in S4 as any kernel is. Moreover, by inspection ker q ⊂ A4 as any product of
two transpositions is even. Since ker q is normal in S4 it is also normal in A4 (fewer conditions to
check).
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