Math 30810 Honors Algebra 3 Homework 6

Andrei Jorza

Due Thursday, October 6

Do any 8 of the following questions. Artin a.b.c means chapter a, section b, exercise c.

1. Explicit Chinese Remainder Theorem.
(a) Let m and n be coprime integers and let u and v be integers such that $m u+n v=1$ (from Bézout's relation). Show that the system of equations

$$
\begin{cases}x \equiv a & (\bmod m) \\ x \equiv b & (\bmod n)\end{cases}
$$

has the unique solution $x \equiv a n v+b m u(\bmod m n)$.
(b) Compute

$$
12^{34^{56^{78}}}(\bmod 90)
$$

[Hint: Use the Chinese Remainder Theorem.] (A bit on notation: the exponent of 56 is 78 , the exponent of 34 is 56^{78}, the exponent of 12 is $34^{56^{78}}$. In particular, this is NOT $\left(\left(12^{34}\right)^{56}\right)^{78}$.)

Proof. (a) That the solution is unique follows from the bijectivity of $x \bmod m n \mapsto(x \bmod m, x$ $\bmod n)$. Finally, $m u \equiv 1(\bmod n)$ and $n v \equiv 1(\bmod n)$ and so $x=a n v+b m u \equiv a(\bmod m)$ and $\equiv b$ $(\bmod n)$ as desired.
(b) It suffices to find the residue $\bmod 9,2$ and 5 . First, since 12 is even the giant number is also even so $S \equiv 0(\bmod 2)$. Next, $3 \mid 12$ so certainly $9 \mid S$ which means $S \equiv 0(\bmod 9)$. We only need to compute $S \bmod 5$. The exponent $34^{56^{78}}$ is certainly a multiple of 4 and so $S \equiv 12^{4 k} \equiv\left(12^{4}\right)^{k}(\bmod 5) \equiv 1$ $(\bmod 5)$ because of Fermat's little theorem. So now we know that $S \equiv 0(\bmod 18)$ and $S \equiv 1(\bmod 5)$. Applying part (a) for $5 \cdot 11-18 c \cot 3=1$ we get $S \equiv 0 \cdot 55-1 \cdot 18 \cdot 3 \equiv-54 \equiv 36(\bmod 90)$.
2. Artin 2.9.5 on page 73 .

Proof. Let's try to solve the system by hand. From the first equation $y \equiv 2 x-1(\bmod n)$. Plugging this into the second one we get $10 x-3 \equiv 2(\bmod n)$ or $10 x \equiv 5(\bmod n)$. Certainly if n is even this cannot be solved as 5 is odd. If n is odd then 2 is invertible $\bmod n$ so we could even solve $2 x \equiv 1$ $(\bmod n)$ which also satisfies $10 x \equiv 5$.
Thus the condition on n is that n be odd.
3. Let p be a prime integer. Show that $(p-1)!\equiv-1(\bmod p)$. [Hint: There are two ways to do this. Either (a) decompose the polynomial $X^{p-1}-1 \bmod p$ into linear factors or (b) interpret $(p-1)$! as a product of elements in $(\mathbb{Z} / p \mathbb{Z})^{\times}$.]

Proof. Method 1: From class if $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}, a^{p-1} \equiv 1(\bmod p)$ and so every element in $\{1,2, \ldots, p-$ $1\}$ is a root of $X^{p-1}-1$. Since this is a polynomial of degree $p-1$ these are all the roots and so $X^{p-1}-1 \equiv(X-1)(X-2) \ldots(X-(p-1))(\bmod p)$. Subbing $X=0$ we get $-1 \equiv(-1)(-2) \ldots(-(p-$ $1))=(-1)^{p-1}(p-1)!(\bmod p)$ which gives $(p-1)!\equiv(-1)^{p}(\bmod p)$. This is -1 if p is odd. When $p=2$ this is 1 but then $1 \equiv-1$ anyway.
Method 2: Note that $x^{2} \equiv 1(\bmod p)$ is the same as $p \mid x^{2}-1=(x-1)(x+1)$ so has solutions ± 1. Now $(\mathbb{Z} / p \mathbb{Z})^{\times}=\{1,2, \ldots, p-1\}$ and we can group these elements in pairs $\left(g, g^{-1}\right)$ whenever $g \neq g^{-1}$, i.e., for $g \notin\{-1,1\}$. So

$$
(p-1)!=1 \cdot(-1) \cdot \prod_{\text {pairs }\left(g, g^{-1}\right)} g \cdot g^{-1} \equiv-1 \quad(\bmod p)
$$

4. Artin 2.12 .1 on page 74 .

Proof. If H is not normal there exists $g \in G$ and $h \in H$ such that $b^{-1} h b \notin H$. But then pick $a=1$ so $H \cdot b H$ contains $1 \cdot b H$ so if $a H b H$ were a coset it would have to be $b H$. But it also contains $h b \cdot 1=h b \notin b H$.
5. Artin 2.12 .2 on page 75 .

Proof. We already know that the set B of upper triangular matrices forms a group and that when you multiply two matrices in B, the diagonal elements simply get multiplied in pairs. This implies that H is a subgroup of B.
Write $n(a, b, c)=\left(\begin{array}{ccc}1 & a & b \\ & 1 & c \\ & & 1\end{array}\right)$. The map $n(a, b, c) \mapsto(a, c) \in \mathbb{R} \times \mathbb{R}$ is a surjective group homomorphism. Indeed, $m(a, b, c) m\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=m\left(a+a^{\prime}, b+b^{\prime}+a c^{\prime}, c+c^{\prime}\right)$.
Note that the kernel of this homomorphism is exactly K which will then be a normal subgroup of H. By the first isomorphism theorem, $H / K \cong \mathbb{R} \times \mathbb{R}$.
Suppose $m(a, b, c) \in Z(H)$. Then $m(a, b, c) m\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=m\left(a^{\prime}, b^{\prime}, c^{\prime}\right) m(a, b, c)$ for all $a^{\prime}, b^{\prime}, c^{\prime}$. From the formula above this implies that $a c^{\prime}=a^{\prime} c$ for all a^{\prime} and c^{\prime} and therefore that $a=c=0$. Thus $K=Z(H)$.
6. Let n be a positive integer and $G=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right) \right\rvert\, a \in(\mathbb{Z} / n \mathbb{Z})^{\times}, b \in \mathbb{Z} / n \mathbb{Z}\right\}$ and $H=\left\{\left.\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right) \right\rvert\, b \in \mathbb{Z} / n \mathbb{Z}\right\}$. Show that G is a group under usual matrix multiplication and H is a normal subgroup of G. (The group G will be a Galois group next semester, so this is a useful problem.)

Proof. Write $m(a, b)$ for the first matrix. Then $m(a, b)^{-1}=m\left(a^{-1},-a^{-1} b\right)$ and $m(a, b) m\left(a^{\prime}, b^{\prime}\right)=$ $m\left(a a^{\prime}, a b^{\prime}+b\right)$ so G is a group. Consider the map $f: G \rightarrow(\mathbb{Z} / n \mathbb{Z})^{\times}$given by $f(m(a, b))=a$. The multiplication formula implies that f is a group homomorphism. Its kernel is exactly H which is therefore a normal subgroup of G.
7. Let G be a finite group and $g \in G$ not the identity. Show that g has order m if and only if the following two conditions are satisfied:
(a) $g^{m}=e$ and
(b) for every prime divisor $p \mid m, g^{m / p} \neq e$.

Proof. Suppose g has order m. Then $m / p<m$ for every prime divisor p of m so certainly $g^{m / p} \neq e$.
Reciprocally, suppose g satisfies the two properties. Then $\operatorname{ord}(g) \mid m$ from the first property. Suppose $\operatorname{ord}(g)<m$. Let p be a prime divisor of $m / \operatorname{ord}(g)$. Then $g^{m / p}=g^{\operatorname{ord}(g) \frac{m}{\operatorname{ord}(g) p}}=e^{\frac{m}{\operatorname{ord}(g) p}}=e$ contradicting the second property. Therefore $\operatorname{ord}(g)=m$.
8. (We will use this exercise in class so try to do it) Suppose G is an abelian group containing an element g of order p^{k+1} where p is a prime and an element h of order $p^{k} m$ where $p \nmid m$. Show that $p^{k+1} m \mid \operatorname{ord}(g h)$.

Proof. Let d be the order of $g h$. Then $(g h)^{d}=1$ implies that $g^{d}=h^{-d}$ and so from class we deduce that

$$
\frac{p^{k+1}}{\left(p^{k+1}, d\right)}=\operatorname{ord}\left(g^{d}\right)=\operatorname{ord}\left(h^{-d}\right)=\frac{p^{k} m}{\left(p^{k} m, d\right)}
$$

Write $d=p^{s} t$ where $p \nmid t$. If $t \leq k$ then $\left(p^{k+1}, d\right)=p^{s}$ while $\left(p^{k} m, d\right)=p^{s}(m, t)$. Comparing the two sides we get

$$
p^{k+1-s}=p^{k-s} m /(m, t)
$$

which is impossible as $p \nmid m$. We deduce that $s \geq k+1$ so $\left(p^{k+1}, d\right)=p^{k+1}$ and $\left(p^{k} m, d\right)=p^{k}(m, t)$. Comparing the two sides again we deduce that $1=m /(m, t)$ so $m \mid t$. This implies that $p^{k+1} m \mid d=$ ord $(g h)$ as desired.

9-10 (Counts as two problems) Consider the permutations $a_{1}=(12)(34), a_{2}=(13)(24)$ and $a_{3}=(14)(23)$ in S_{4}. Let $X=\left\{a_{1}, a_{2}, a_{3}\right\}$.
(a) If $\sigma \in S_{4}$ show that the inner automorphism $\phi_{\sigma}(x)=\sigma x \sigma^{-1}$ of S_{4} yields a bijective function $\left.\phi_{\sigma}\right|_{X}: X \rightarrow X$. I.e., you need to check that ϕ_{σ} takes X to X and that it is a bijection on X.
(b) For $\sigma \in S_{4}$ define the permutation $c_{\sigma} \in S_{3}$ such that $\phi_{\sigma}\left(a_{1}\right)=a_{c_{\sigma}(1)}, \phi_{\sigma}\left(a_{2}\right)=a_{c_{\sigma}(2)}$ and $\phi_{\sigma}\left(a_{3}\right)=a_{c_{\sigma}(3)}$. Show that the map $q: S_{4} \rightarrow S_{3}$ defined by $q(\sigma)=c_{\sigma}$ is a group homomorphism.
(c) Show that q is surjective. [Hint: It suffices to show that the image of q contains a transposition and a 3 -cycle as we showed in class that S_{3} is generated by two such elements.]
(d) Show that $\operatorname{ker} q=X \cup\{e\}$. [Hint: show that $\operatorname{ker} q$ contains $X \cup\{e\}$ and then use the first isomorphism theorem.]
(e) Conclude that $\operatorname{ker} q$ is a normal subgroup of order 4 of the alternating group A_{4}.

Proof. (a): If σ is a permutation and $c_{1}=\left(i_{1,1}, \ldots, i_{1, k_{1}}\right), \ldots, c_{r}=\left(i_{r, 1}, \ldots, i_{r, k_{r}}\right)$ are disjoint cycles then

$$
\sigma c_{1} \cdots c_{r} \sigma^{-1}=\prod \sigma c_{j} \sigma^{-1}
$$

where $\sigma c_{j} \sigma^{-1}=c_{j}^{\sigma}:=\left(\sigma\left(i_{j, 1}\right), \ldots, \sigma\left(i_{j, k_{j}}\right)\right)$, these conjugate cycles being again disjoint. Indeed, we only need to check that $\sigma c_{j}=c_{j}^{\sigma} \sigma$ take $i_{u, v}$ to the same value. If $u=j$ then $\sigma c_{j}\left(i_{j, v}\right)=\sigma\left(i_{j, v+1}\right)$ and $c_{j}^{\sigma} \sigma\left(i_{j, v}\right)=\sigma\left(i_{j, v+1}\right)$ by definition. If $u \neq j$ then $\sigma c_{j}\left(i_{u, v}\right)=\sigma\left(i_{u, v}\right)$ whereas $c_{j}^{\sigma} \sigma\left(i_{u, v}\right)=\sigma\left(i_{u, v}\right)$ as c_{j}^{σ} doesn't do anything to $\sigma\left(i_{u, v}\right)$ when $u \neq v$.
So this means that ϕ_{σ} takes a product of transpositions again to a product of transpositions and therefore ϕ_{σ} restricts to a function $X \rightarrow X$ as desired. Since ϕ_{σ} is an inner automorphism it is bijective and therefore $\left.\phi_{\sigma}\right|_{X}$ is injective on a set of 3 elements which implies it is also bijective.
(b): We need to check that $q(\sigma \tau)=q(\sigma) q(\tau)$, i.e., that $c_{\sigma \tau}=c_{\sigma} c_{\tau}$. We need therefore show that $a_{c_{\sigma \tau}(i)}=a_{c_{\sigma} c_{\tau}(i)}$. But the LHS is simply $\phi_{\sigma \tau}\left(a_{i}\right)$ while the RHS is $\phi_{\sigma} \phi_{\tau}\left(a_{i}\right)$ and the equality follows from the fact that $\sigma \mapsto \phi_{\sigma}$ is a homomorphism from homework 4.
(c): If $\sigma=(23)$ then from the solution to part (a) we deduce that $\sigma a_{1} \sigma^{-1}=a_{2}, \sigma a_{2} \sigma^{-1}=a_{1}$ and $\sigma a_{3} \sigma^{-1}=a_{3}$. Thus $q(\sigma)=(12)$. If $\tau=(123)$ then again we see that ϕ_{τ} takes a_{1} to a_{3}, a_{3} to a_{2} and a_{2} to a_{1} and so $q(\tau)=(132)$. Since $\operatorname{Im} q \subset S_{3}$ contains (12) and (132) it must contain all of S_{3}.
(d): By the first isomorphism theorem $\left|S_{4}\right| /|\operatorname{ker} q|=\left|S_{3}\right|$ and so $|\operatorname{ker} q|=4$. The recipe from the proof of part (a) clearly shows that if $\sigma \in X \cup\{e\}$ then $\phi_{\sigma}\left(a_{i}\right)=a_{i}$ and so $X \cup\{e\} \subset \operatorname{ker} q$. Comparing sizes we get that $\operatorname{ker} q$ is exactly $X \cup\{e\}$.
(e): $\operatorname{ker} q$ is normal in S_{4} as any kernel is. Moreover, by inspection $\operatorname{ker} q \subset A_{4}$ as any product of two transpositions is even. Since $\operatorname{ker} q$ is normal in S_{4} it is also normal in A_{4} (fewer conditions to check).

