Math 30810 Honors Algebra 3 Homework 6

Andrei Jorza

Due Thursday, October 6

Do any 8 of the following questions. Artin a.b.c means chapter a, section b, exercise c.

- 1. Explicit Chinese Remainder Theorem.
 - (a) Let m and n be coprime integers and let u and v be integers such that mu+nv = 1 (from Bézout's relation). Show that the system of equations

$$\begin{cases} x \equiv a \pmod{m} \\ x \equiv b \pmod{n} \end{cases}$$

has the unique solution $x \equiv anv + bmu \pmod{mn}$.

(b) Compute

$$12^{34^{56^{78}}} \pmod{90}$$

[Hint: Use the Chinese Remainder Theorem.] (A bit on notation: the exponent of 56 is 78, the exponent of 34 is 56^{78} , the exponent of 12 is $34^{56^{78}}$. In particular, this is NOT ($(12^{34})^{56}$)⁷⁸.)

Proof. (a) That the solution is unique follows from the bijectivity of $x \mod mn \mapsto (x \mod m, x \mod n)$. Finally, $mu \equiv 1 \pmod{n}$ and $nv \equiv 1 \pmod{n}$ and so $x = anv + bmu \equiv a \pmod{m}$ and $\equiv b \pmod{n}$ as desired.

(b) It suffices to find the residue mod 9, 2 and 5. First, since 12 is even the giant number is also even so $S \equiv 0 \pmod{2}$. Next, $3 \mid 12$ so certainly $9 \mid S$ which means $S \equiv 0 \pmod{9}$. We only need to compute $S \mod 5$. The exponent $34^{56^{78}}$ is certainly a multiple of 4 and so $S \equiv 12^{4k} \equiv (12^4)^k \pmod{5} \equiv 1 \pmod{5}$ because of Fermat's little theorem. So now we know that $S \equiv 0 \pmod{18}$ and $S \equiv 1 \pmod{5}$. Applying part (a) for $5 \cdot 11 - 18 \operatorname{cdot} 3 = 1$ we get $S \equiv 0 \cdot 55 - 1 \cdot 18 \cdot 3 \equiv -54 \equiv 36 \pmod{90}$.

2. Artin 2.9.5 on page 73.

Proof. Let's try to solve the system by hand. From the first equation $y \equiv 2x - 1 \pmod{n}$. Plugging this into the second one we get $10x - 3 \equiv 2 \pmod{n}$ or $10x \equiv 5 \pmod{n}$. Certainly if n is even this cannot be solved as 5 is odd. If n is odd then 2 is invertible mod n so we could even solve $2x \equiv 1 \pmod{n}$ which also satisfies $10x \equiv 5$.

Thus the condition on n is that n be odd.

- 3. Let p be a prime integer. Show that $(p-1)! \equiv -1 \pmod{p}$. [Hint: There are two ways to do this. Either (a) decompose the polynomial $X^{p-1} 1 \mod p$ into linear factors or (b) interpret (p-1)! as a product of elements in $(\mathbb{Z}/p\mathbb{Z})^{\times}$.]

Proof. Method 1: From class if $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, $a^{p-1} \equiv 1 \pmod{p}$ and so every element in $\{1, 2, \ldots, p-1\}$ is a root of $X^{p-1} - 1$. Since this is a polynomial of degree p-1 these are all the roots and so $X^{p-1} - 1 \equiv (X-1)(X-2) \ldots (X-(p-1)) \pmod{p}$. Subbing X = 0 we get $-1 \equiv (-1)(-2) \ldots (-(p-1)) = (-1)^{p-1}(p-1)! \pmod{p}$ which gives $(p-1)! \equiv (-1)^p \pmod{p}$. This is -1 if p is odd. When p = 2 this is 1 but then $1 \equiv -1$ anyway.

Method 2: Note that $x^2 \equiv 1 \pmod{p}$ is the same as $p \mid x^2 - 1 = (x - 1)(x + 1)$ so has solutions ± 1 . Now $(\mathbb{Z}/p\mathbb{Z})^{\times} = \{1, 2, \dots, p - 1\}$ and we can group these elements in pairs (g, g^{-1}) whenever $g \neq g^{-1}$, i.e., for $g \notin \{-1, 1\}$. So

$$(p-1)! = 1 \cdot (-1) \cdot \prod_{\text{pairs } (g,g^{-1})} g \cdot g^{-1} \equiv -1 \pmod{p}$$

4. Artin 2.12.1 on page 74.

Proof. If H is not normal there exists $g \in G$ and $h \in H$ such that $b^{-1}hb \notin H$. But then pick a = 1 so $H \cdot bH$ contains $1 \cdot bH$ so if aHbH were a coset it would have to be bH. But it also contains $hb \cdot 1 = hb \notin bH$.

5. Artin 2.12.2 on page 75.

Proof. We already know that the set B of upper triangular matrices forms a group and that when you multiply two matrices in B, the diagonal elements simply get multiplied in pairs. This implies that H is a subgroup of B.

Write $n(a, b, c) = \begin{pmatrix} 1 & a & b \\ & 1 & c \\ & & 1 \end{pmatrix}$. The map $n(a, b, c) \mapsto (a, c) \in \mathbb{R} \times \mathbb{R}$ is a surjective group homomorphism. Indeed, m(a, b, c)m(a', b', c') = m(a + a', b + b' + ac', c + c').

Note that the kernel of this homomorphism is exactly K which will then be a normal subgroup of H. By the first isomorphism theorem, $H/K \cong \mathbb{R} \times \mathbb{R}$.

Suppose $m(a, b, c) \in Z(H)$. Then m(a, b, c)m(a', b', c') = m(a', b', c')m(a, b, c) for all a', b', c'. From the formula above this implies that ac' = a'c for all a' and c' and therefore that a = c = 0. Thus K = Z(H).

6. Let *n* be a positive integer and $G = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \mid a \in (\mathbb{Z}/n\mathbb{Z})^{\times}, b \in \mathbb{Z}/n\mathbb{Z} \right\}$ and $H = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \mid b \in \mathbb{Z}/n\mathbb{Z} \right\}$. Show that *G* is a group under usual matrix multiplication and *H* is a normal subgroup of *G*. (The group *G* will be a Galois group next semester, so this is a useful problem.)

Proof. Write m(a, b) for the first matrix. Then $m(a, b)^{-1} = m(a^{-1}, -a^{-1}b)$ and m(a, b)m(a', b') = m(aa', ab' + b) so G is a group. Consider the map $f: G \to (\mathbb{Z}/n\mathbb{Z})^{\times}$ given by f(m(a, b)) = a. The multiplication formula implies that f is a group homomorphism. Its kernel is exactly H which is therefore a normal subgroup of G.

- 7. Let G be a finite group and $g \in G$ not the identity. Show that g has order m if and only if the following two conditions are satisfied:
 - (a) $g^m = e$ and
 - (b) for every prime divisor $p \mid m, g^{m/p} \neq e$.

Proof. Suppose g has order m. Then m/p < m for every prime divisor p of m so certainly $g^{m/p} \neq e$. Reciprocally, suppose g satisfies the two properties. Then $\operatorname{ord}(g) \mid m$ from the first property. Suppose $\operatorname{ord}(g) < m$. Let p be a prime divisor of $m/\operatorname{ord}(g)$. Then $g^{m/p} = g^{\operatorname{ord}(g)} = e^{\frac{m}{\operatorname{ord}(g)p}} = e^{\frac{m}{\operatorname{ord}(g)p}} = e$ contradicting the second property. Therefore $\operatorname{ord}(g) = m$.

8. (We will use this exercise in class so try to do it) Suppose G is an abelian group containing an element g of order p^{k+1} where p is a prime and an element h of order $p^k m$ where $p \nmid m$. Show that $p^{k+1}m \mid \operatorname{ord}(gh)$.

Proof. Let d be the order of gh. Then $(gh)^d = 1$ implies that $g^d = h^{-d}$ and so from class we deduce that

$$\frac{p^{k+1}}{(p^{k+1},d)} = \operatorname{ord}(g^d) = \operatorname{ord}(h^{-d}) = \frac{p^k m}{(p^k m,d)}$$

Write $d = p^s t$ where $p \nmid t$. If $t \leq k$ then $(p^{k+1}, d) = p^s$ while $(p^k m, d) = p^s(m, t)$. Comparing the two sides we get

$$p^{k+1-s} = p^{k-s}m/(m,t)$$

which is impossible as $p \nmid m$. We deduce that $s \geq k+1$ so $(p^{k+1}, d) = p^{k+1}$ and $(p^k m, d) = p^k(m, t)$. Comparing the two sides again we deduce that 1 = m/(m, t) so $m \mid t$. This implies that $p^{k+1}m \mid d = \operatorname{ord}(gh)$ as desired.

- 9-10 (Counts as two problems) Consider the permutations $a_1 = (12)(34)$, $a_2 = (13)(24)$ and $a_3 = (14)(23)$ in S_4 . Let $X = \{a_1, a_2, a_3\}$.
 - (a) If $\sigma \in S_4$ show that the inner automorphism $\phi_{\sigma}(x) = \sigma x \sigma^{-1}$ of S_4 yields a bijective function $\phi_{\sigma}|_X : X \to X$. I.e., you need to check that ϕ_{σ} takes X to X and that it is a bijection on X.
 - (b) For $\sigma \in S_4$ define the permutation $c_{\sigma} \in S_3$ such that $\phi_{\sigma}(a_1) = a_{c_{\sigma}(1)}, \phi_{\sigma}(a_2) = a_{c_{\sigma}(2)}$ and $\phi_{\sigma}(a_3) = a_{c_{\sigma}(3)}$. Show that the map $q: S_4 \to S_3$ defined by $q(\sigma) = c_{\sigma}$ is a group homomorphism.
 - (c) Show that q is surjective. [Hint: It suffices to show that the image of q contains a transposition and a 3-cycle as we showed in class that S_3 is generated by two such elements.]
 - (d) Show that ker $q = X \cup \{e\}$. [Hint: show that ker q contains $X \cup \{e\}$ and then use the first isomorphism theorem.]
 - (e) Conclude that ker q is a normal subgroup of order 4 of the alternating group A_4 .

Proof. (a): If σ is a permutation and $c_1 = (i_{1,1}, \ldots, i_{1,k_1}), \ldots, c_r = (i_{r,1}, \ldots, i_{r,k_r})$ are disjoint cycles then

$$\sigma c_1 \cdots c_r \sigma^{-1} = \prod \sigma c_j \sigma^{-1}$$

where $\sigma c_j \sigma^{-1} = c_j^{\sigma} := (\sigma(i_{j,1}), \dots, \sigma(i_{j,k_j}))$, these conjugate cycles being again disjoint. Indeed, we only need to check that $\sigma c_j = c_j^{\sigma} \sigma$ take $i_{u,v}$ to the same value. If u = j then $\sigma c_j(i_{j,v}) = \sigma(i_{j,v+1})$ and $c_j^{\sigma} \sigma(i_{j,v}) = \sigma(i_{j,v+1})$ by definition. If $u \neq j$ then $\sigma c_j(i_{u,v}) = \sigma(i_{u,v})$ whereas $c_j^{\sigma} \sigma(i_{u,v}) = \sigma(i_{u,v})$ as c_j^{σ} doesn't do anything to $\sigma(i_{u,v})$ when $u \neq v$.

So this means that ϕ_{σ} takes a product of transpositions again to a product of transpositions and therefore ϕ_{σ} restricts to a function $X \to X$ as desired. Since ϕ_{σ} is an inner automorphism it is bijective and therefore $\phi_{\sigma}|_X$ is injective on a set of 3 elements which implies it is also bijective.

(b): We need to check that $q(\sigma\tau) = q(\sigma)q(\tau)$, i.e., that $c_{\sigma\tau} = c_{\sigma}c_{\tau}$. We need therefore show that $a_{c_{\sigma\tau}(i)} = a_{c_{\sigma}c_{\tau}(i)}$. But the LHS is simply $\phi_{\sigma\tau}(a_i)$ while the RHS is $\phi_{\sigma}\phi_{\tau}(a_i)$ and the equality follows from the fact that $\sigma \mapsto \phi_{\sigma}$ is a homomorphism from homework 4.

(c): If $\sigma = (23)$ then from the solution to part (a) we deduce that $\sigma a_1 \sigma^{-1} = a_2$, $\sigma a_2 \sigma^{-1} = a_1$ and $\sigma a_3 \sigma^{-1} = a_3$. Thus $q(\sigma) = (12)$. If $\tau = (123)$ then again we see that ϕ_{τ} takes a_1 to a_3 , a_3 to a_2 and a_2 to a_1 and so $q(\tau) = (132)$. Since Im $q \subset S_3$ contains (12) and (132) it must contain all of S_3 .

(d): By the first isomorphism theorem $|S_4|/|\ker q| = |S_3|$ and so $|\ker q| = 4$. The recipe from the proof of part (a) clearly shows that if $\sigma \in X \cup \{e\}$ then $\phi_{\sigma}(a_i) = a_i$ and so $X \cup \{e\} \subset \ker q$. Comparing sizes we get that ker q is exactly $X \cup \{e\}$.

(e): ker q is normal in S_4 as any kernel is. Moreover, by inspection ker $q \subset A_4$ as any product of two transpositions is even. Since ker q is normal in S_4 it is also normal in A_4 (fewer conditions to check).