Math 30810 Honors Algebra 3
Homework 6

Andrei Jorza

Due Thursday, October 6

Do any 8 of the following questions. Artin a.b.c means chapter a, section b, exercise c.
1. Explicit Chinese Remainder Theorem.

(a) Let m and n be coprime integers and let « and v be integers such that mu+nv = 1 (from Bézout’s
relation). Show that the system of equations

{x =a (mod m)

x=b (modn)

has the unique solution z = anv + bmu (mod mn).
(b) Compute
34567
12 (mod 90)

[Hint: Use the Chinese Remainder Theorem.] (A bit on notation: the exponent of 56 is 78, the
exponent of 34 is 567%, the exponent of 12 is 346" In particular, this is NOT ((1234)56)78))

Proof. (a) That the solution is unique follows from the bijectivity of & mod mn — (x mod m,x
mod n). Finally, mu =1 (mod n) and nv =1 (mod n) and so x = anv + bmu = a (mod m) and = b
(mod n) as desired.

(b) Tt suffices to find the residue mod 9, 2 and 5. First, since 12 is even the giant number is also even so
S =0 (mod 2). Next, 3 | 12 so certainly 9 | S which means S =0 (mod 9). We only need to compute
S mod 5. The exponent 346" is certainly a multiple of 4 and so S = 124 = (124)* (mod 5) = 1
(mod 5) because of Fermat’s little theorem. So now we know that S =0 (mod 18) and S =1 (mod 5).
Applying part (a) for 5-11 — 18cdot3 =1 we get S=0-55—1-18-3 = —54 = 36 (mod 90). O

2. Artin 2.9.5 on page 73.

Proof. Let’s try to solve the system by hand. From the first equation y = 2z — 1 (mod n). Plugging
this into the second one we get 10z — 3 = 2 (mod n) or 10z = 5 (mod n). Certainly if n is even this
cannot be solved as 5 is odd. If n is odd then 2 is invertible mod n so we could even solve 2z = 1
(mod n) which also satisfies 10x = 5.

Thus the condition on n is that n be odd. O

3. Let p be a prime integer. Show that (p — 1)! = —1 (mod p). [Hint: There are two ways to do this.
Either (a) decompose the polynomial X?~* — 1 mod p into linear factors or (b) interpret (p — 1)! as
a product of elements in (Z/pZ)*.]



Proof. Method 1: From class if a € (Z/pZ)*, a?~* =1 (mod p) and so every element in {1,2,...,p—
1} is a root of XP~1 — 1. Since this is a polynomial of degree p — 1 these are all the roots and so
XPl 1=(X-1)(X-2)...(X—(p—1)) (mod p). Subbing X =0 we get —1 = (—=1)(-=2)...(=(p—
1)) = (=1)P~(p — 1)! (mod p) which gives (p — 1)! = (=1)? (mod p). This is —1 if p is odd. When
p = 2 this is 1 but then 1 = —1 anyway.

Method 2: Note that 22 =1 (mod p) is the same as p | 22 — 1 = (z — 1)(z + 1) so has solutions =+1.

Now (Z/pZ)* = {1,2,...,p— 1} and we can group these elements in pairs (g, g~!) whenever g # g1,

ie., for g ¢ {—1,1}. So

p-1!'=1-(-1)- [] 9-9'=-1 (modp)

pairs (g,9~1)

. Artin 2.12.1 on page 74.

Proof. If H is not normal there exists g € G and h € H such that b='hb ¢ H. But then pick a = 1
so H - bH contains 1 - bH so if aHbH were a coset it would have to be bH. But it also contains
hb-1=nhb¢ bH. O

. Artin 2.12.2 on page 75.

Proof. We already know that the set B of upper triangular matrices forms a group and that when you
multiply two matrices in B, the diagonal elements simply get multiplied in pairs. This implies that H
is a subgroup of B.

1 a b
Write n(a, b, ¢) = 1 ¢ ]. Themap n(a,b,c) — (a,c) € RxR is a surjective group homomorphism.
1

Indeed, m(a,b,c)m(a’,t',c’) = m(a+a',b+ b +ac,c+ ).
Note that the kernel of this homomorphism is exactly K which will then be a normal subgroup of H.
By the first isomorphism theorem, H/K = R x R.

Suppose m(a,b,c) € Z(H). Then m(a,b,c)m(a’,b’',c) = m(a’,v,)m(a,b,c) for all a/,b’,¢'. From

the formula above this implies that ac’ = a’c for all @’ and ¢’ and therefore that @ = ¢ = 0. Thus

K = Z(H). 0
e a b y 10

. Let n be a positive integer and G = 0 1 |a € (Z/nZ)*,beZ/nZ;and H = 01 |beZ/nZ ;.

Show that G is a group under usual matrix multiplication and H is a normal subgroup of G. (The
group G will be a Galois group next semester, so this is a useful problem.)

Proof. Write m(a,b) for the first matrix. Then m(a,b)~! = m(a™!, —a~1b) and m(a,b)m(a’,v’) =
m(aa’,ab’ + b) so G is a group. Consider the map f : G — (Z/nZ)* given by f(m(a,b)) = a. The
multiplication formula implies that f is a group homomorphism. Its kernel is exactly H which is
therefore a normal subgroup of G. O

. Let G be a finite group and g € G not the identity. Show that g has order m if and only if the following
two conditions are satisfied:

(a) g™ =e and

(b) for every prime divisor p | m, g™/P # e.



9-10

Proof. Suppose g has order m. Then m/p < m for every prime divisor p of m so certainly g™/P # e.

Reciprocally, suppose g satisfies the two properties. Then ord(g) | m from the first property. Suppose
ord(g) < m. Let p be a prime divisor of m/ord(g). Then gm/? = ¢ 4Wadln = eodlar = ¢
contradicting the second property. Therefore ord(g) = m. O

(We will use this exercise in class so try to do it) Suppose G is an abelian group containing an element g
of order p**1 where p is a prime and an element h of order p*m where p { m. Show that p**1m | ord(gh).

Proof. Let d be the order of gh. Then (gh)? = 1 implies that g¢ = h~¢ and so from class we deduce
that

Pl PEm
(p**1.d) (pFm, d)

Write d = pt where p { t. If t < k then (pF*!,d) = p® while (p*m,d) = p*(m,t). Comparing the two
sides we get

= ord(g?) = ord(h™%) =

pk+1—s _ pk—sm/(m’ t)

which is impossible as p { m. We deduce that s > k + 1 so (p**1,d) = p**! and (p*m,d) = p*(m,t).
Comparing the two sides again we deduce that 1 = m/(m,t) so m | t. This implies that p**'m | d =
ord(gh) as desired. O
(Counts as two problems) Consider the permutations a; = (12)(34), as = (13)(24) and a3 = (14)(23)
in Sy. Let X = {a1,as,a3}.

(a) If 0 € Sy show that the inner automorphism ¢, (x) = oxo~! of S, yields a bijective function
dolx : X = X. Le., you need to check that ¢, takes X to X and that it is a bijection on X.

(b) For o0 € Sy define the permutation ¢, € S3 such that ¢,(a1) = ac ), ¢o(a2) = ac, ) and
¢o(a3) = ac,(3)- Show that the map ¢ : Sy — S3 defined by ¢(0) = ¢, is a group homomorphism.

(c¢) Show that ¢ is surjective. [Hint: It suffices to show that the image of ¢ contains a transposition
and a 3-cycle as we showed in class that S5 is generated by two such elements.]

(d) Show that kerq = X U {e}. [Hint: show that kerq contains X U {e} and then use the first
isomorphism theorem.]

(e) Conclude that ker ¢ is a normal subgroup of order 4 of the alternating group Aj.

Proof. (a): If ¢ is a permutation and ¢1 = (i1,1,...,%1,k,), .-+, & = (ir1,...,0rk,) are disjoint cycles
then
-1 _ -1
gcCq - CrO —HO’CjO'

V= ¢7 = (0(ij1),---,0(ijk,)), these conjugate cycles being again disjoint. Indeed, we

where ocjo™ 7

only need to check that oc; = cfo take iy, to the same value. If u = j then 0¢;(t.0) = 0(ijp41) and
cfo(ijv) = o(ijwt1) by definition. If u # j then oc¢;(iv,w) = 0(iy,p) Whereas ¢fo(iu,y) = o (iuw) as ¢f
doesn’t do anything to o (i, ,) when u # v.

So this means that ¢, takes a product of transpositions again to a product of transpositions and
therefore ¢, restricts to a function X — X as desired. Since ¢, is an inner automorphism it is
bijective and therefore ¢, |x is injective on a set of 3 elements which implies it is also bijective.

(b): We need to check that ¢(o7) = q(0)q(7), i.e., that ¢,y = coc;. We need therefore show that
e, (i) coer (i) But the LHS is simply ¢,-(a;) while the RHS is ¢,¢-(a;) and the equality follows
from the fact that ¢ — ¢, is a homomorphism from homework 4.

= aQ

(c): If ¢ = (23) then from the solution to part (a) we deduce that cajo~! = ag, cazo~! = a; and
oazo~t = az. Thus q(o) = (12). If 7 = (123) then again we see that ¢, takes a; to a3, as to az and
as to a; and so ¢(7) = (132). Since Im ¢ C S3 contains (12) and (132) it must contain all of Ss.



(d): By the first isomorphism theorem |Sy|/| ker g| = |S3| and so | ker g| = 4. The recipe from the proof
of part (a) clearly shows that if o € X U {e} then ¢,(a;) = a; and so X U{e} C kerq. Comparing sizes
we get that ker ¢ is exactly X U {e}.

(e): kergq is normal in S4 as any kernel is. Moreover, by inspection kerq C A4 as any product of
two transpositions is even. Since kerq is normal in Sy it is also normal in A4 (fewer conditions to

check). O



