Math 30810 Honors Algebra 3 Homework 7

Andrei Jorza

Due at noon on Thursday, October 13

Do any 8 of the following questions. Artin a.b.c means chapter a, section b, exercise c.

- 1-2 (Counts as 2 problems) Let p > 2 be a prime number and $G = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \mid a \in (\mathbb{Z}/p\mathbb{Z})^{\times}, b \in \mathbb{Z}/p\mathbb{Z} \right\}$, a group under matrix multiplication. Let H < G be the subgroup of diagonal matrices.
 - (a) Let $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ and define $N_a = \left\{ \begin{pmatrix} a^k & b \\ 0 & 1 \end{pmatrix} \mid b \in \mathbb{Z}/p\mathbb{Z}, k \in \mathbb{Z} \right\}$. Show that $N_a \triangleleft G$.
 - (b) If a normal subgroup N of G contains a matrix of the form $\begin{pmatrix} x & y \\ 0 & 1 \end{pmatrix}$ show that N also contains the matrix $\begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix}$. [Hint: Use that N is normal when $x \neq 1$ and that N is a subgroup when x = 1.]
 - (c) If N is a normal subgroup of G show that there exists $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ (necessarily of the form $a = g^k$ for a primitive root $g \mod p$ and an exponent k) such that $H \cap N$ is the set of matrices of the form $\begin{pmatrix} a^m & 0 \\ 0 & 1 \end{pmatrix}$, with $m \in \mathbb{Z}$. [Hint: You need to use that $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is cyclic.]
 - (d) Show that if a is as in part (c) then either $N = N_a$ or $N = \{I_2\}$. [Hint: Use that N is normal.] Remark: We'll use this exercise in Galois theory next semester so I recommend you do it.
- 3. Let p > 2 be a prime number. Show by induction that if $n \ge 0$ and $p \nmid m$ then:

$$(1+p)^{p^n m} \equiv 1 + mp^{n+1} \pmod{p^{n+2}}$$

4. Let p > 2 be a prime number. Show that if g is a primitive root modulo p then $a = g^{p^{n-1}}(1+p)$ is a primitive root modulo p^n , i.e., $a \in (\mathbb{Z}/p^n\mathbb{Z})^{\times}$ has order $\varphi(p^n)$ and therefore $(\mathbb{Z}/p^n\mathbb{Z})^{\times}$ is cyclic generated by a. [Hint: Use the previous exercise.]

- 5. Let $G = \langle g \rangle$ be a cyclic group of order n. Recall that φ is Euler's function defined as $\varphi(m) = |(\mathbb{Z}/m\mathbb{Z})^{\times}|$ equals the number of integers $1 \leq k < m$ which are coprime to m.
 - (a) Show that g^k has order d if and only if k = nr/d for r coprime to d.
 - (b) For a divisor $d \mid n$ show that there are exactly $\varphi(d)$ elements of G of order exactly d. (In particular G has exactly $\varphi(n)$ generators.)
 - (c) Deduce the identity $\sum_{d|n} \varphi(d) = n$. [Hint: Apply part (a) to all the divisors of n.]

Remark: There's a procedure by which the equations $\sum_{d|n} \varphi(d) = n$ for all positive integers n can be considered a system of equations with unknowns $\varphi(d)$ and one can actually solve for $\varphi(n)$ and obtain the formula we got in class. This is called Möbius inversion. We'll actually use Möbius inversion next semester in Galois theory to compute cyclotomic polynomials.

- 6. Consider the complex number $\zeta = e^{2\pi i/10}$ which generates the cyclic group $G = \langle \zeta \rangle$ of order 10. Show that the only homomorphisms $f: S_3 \to G$ are the trivial homomorphism and the sign homomorphism $\varepsilon(\sigma) \in \{-1, 1\}$. (Note that $\zeta^5 = -1$ so $\{-1, 1\} \subset \langle \zeta \rangle$.) [Hint: what is $f(A_3)$?]
- 7. (a) Suppose $p \equiv 3 \pmod{4}$ is a prime. If $y \equiv x^2 \pmod{p}$ show that $x \equiv \pm y^{(p+1)/4} \pmod{p}$. [Hint: start by showing that $x^2 \equiv y \pmod{p}$ can have at most 2 solutions.]
 - (b) Consider p = 503 and q = 991, both $\equiv 3 \pmod{4}$. I tell you that $x^2 \equiv 76472 \pmod{pq}$. What is $x \mod pq$? [Feel free to use wolfram alpha for computations. I'm giving you that $991 \cdot 67 132 \cdot 503 = 1$. It's easier to use the Chinese Remainder Theorem.]

Remark: Rabin's cryptosystem sends x to $x^2 \mod pq$ for two primes $p \neq q$, both $\equiv 3 \pmod 4$, and you just produced a decryption algorithm.

- 8. (a) Show that if $f \in \text{Aut}(S_3)$ then $f(\sigma) \in \{(12), (13), (23)\}$ and $f(\tau) \in \{(123), (132)\}$. [Recall that $\sigma = (12)$ and $\tau = (123)$ generate S_3 .]
 - (b) Deduce that $\operatorname{Aut}(S_3) \cong S_3$. [Hint: Use part (a) to show that $\operatorname{Aut}(S_3)$ has at most 6 elements. What is $\operatorname{Inn}(S_3) \subset \operatorname{Aut}(S_3)$?]
- 9. Write \mathbb{F}_2 instead of $\mathbb{Z}/2\mathbb{Z}$.
 - (a) Show that $GL(2, \mathbb{F}_2)$ permutes the three nonzero vectors in \mathbb{F}_2^2 .
 - (b) Deduce that $GL(2, \mathbb{F}_2) \cong S_3$.
- 10. Let $H = \mathbb{Z}/2\mathbb{Z}$ and $N = \mathbb{Z}/8\mathbb{Z}$ and consider $\phi : H \to \operatorname{Aut}(N)$ defined as $\phi(x) = 3x$. Consider $R, F \in G := N \rtimes_{\phi} H$ defined as R = (0,1) and F = (1,0). Show that F and R generate G, F has order 2, R has order 8 and $FRF = R^3$.