
Math 30810 Honors Algebra 3

Homework 7

Andrei Jorza

Due at noon on Thursday, October 13

Do any 8 of the following questions. Artin a.b.c means chapter a, section b, exercise c.

1-2 (Counts as 2 problems) Let p > 2 be a prime number and G =

{(
a b
0 1

)
| a ∈ (Z/pZ)×, b ∈ Z/pZ

}
, a

group under matrix multiplication. Let H < G be the subgroup of diagonal matrices.

(a) Let a ∈ (Z/pZ)× and define Na =

{(
ak b
0 1

)
| b ∈ Z/pZ, k ∈ Z

}
. Show that Na CG.

(b) If a normal subgroup N of G contains a matrix of the form

(
x y
0 1

)
show that N also contains

the matrix

(
x 0
0 1

)
. [Hint: Use that N is normal when x 6= 1 and that N is a subgroup when

x = 1.]

(c) If N is a normal subgroup of G show that there exists a ∈ (Z/pZ)× (necessarily of the form a = gk

for a primitive root g mod p and an exponent k) such that H ∩ N is the set of matrices of the

form

(
am 0
0 1

)
, with m ∈ Z. [Hint: You need to use that (Z/pZ)× is cyclic.]

(d) Show that if a is as in part (c) then either N = Na or N = {I2}. [Hint: Use that N is normal.]

Remark: We’ll use this exercise in Galois theory next semester so I recommend you do it.

Proof. (a): Write m(a, b) =

(
a b

1

)
. Look at the map f : G → (Z/pZ)× defined by f(m(a, b)) = a.

By inspection this is a homomorphism. Moreover, Na is defined as Na = f−1(〈a〉). Suppose x ∈ Na =
f−1(〈a〉) and g ∈ G. Then f(gxg−1) = f(g)f(x)f(g−1) = f(x) ∈ 〈a〉 since the group (Z/pZ)× is
abelian. It follows that gxg−1 ∈ f−1(〈a〉) = Na and so Na is normal.

Remark: In fact more generally the preimage of any normal group is also normal.

(b): If N contains the matrix m(x, y) with x 6= 1 then, as N is normal in G, it also contains the matrix

m(1, u)m(x, y)m(1,−u) = m(x, y − (x− 1)u)

If x 6= 1 it follows that the map u 7→ y− (x− 1)u is bijective and so taking u = y/(x− 1) yields that N
contains the matrix m(x, 0) as desired. If x = 1 then N also contains the power m(1, y)p = m(1, py) =
I2.

(c): Suppose N is now normal in G. Then f(N) is a subgroup of (Z/pZ)×. This group is cyclic and we
know that every subgroup of a cyclic group is cyclic from a previous homework. Therefore f(N) = 〈a〉
for some a ∈ (Z/pZ)×. This means that for each exponent k the subgroup N contains an element of
the form m(ak, b).
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Part (b) applied to N then shows that N contains m(ak, 0) for each k. Necessarily H ∩ Na is of the
desired form.

(d): First, by definition of a, N ⊂ Na. If m(ak, 0) ∈ N then m(1, u)m(ak, 0)m(1,−u) = m(ak, (1 −
ak)u) ∈ N . If ak 6= 1 it follows as in part (b) that Na ⊂ N . It follows that N = Na.

Suppose that a 6= 1. We still need to show that all matrices of the form m(1, b) are in N . But from the
previous line we know that if a has order d then m(ad−1, x) ∈ N and so m(1, x) = m(ad−1, x)m(a, 0) ∈
N . We deduce that N = Na.

Finally, suppose a = 1. If N 6= {I2} then N contains a matrix of the form m(1, b) for some b 6= 0. Then
m(1, b)r = m(1, rb) ∈ N and varying r we deduce that N1 ⊂ N . Again we conclude that N = N1.

3. Let p > 2 be a prime number. Show by induction that if n ≥ 0 and p - m then:

(1 + p)p
nm ≡ 1 +mpn+1 (mod pn+2)

Proof. We’ll prove by induction on n. If n = 0 then (1 + p)m = 1 + mp +
(
m
2

)
p2 + · · · ≡ 1 + pm

(mod p2). Suppose that (1 + p)p
nm ≡ 1 +mpn+1 (mod pn+2). Then (1 + p)p

nm = 1 +mpn+1 + kpn+2.
We now compute

(1 + p)p
n+1m = (1 +mpn+1 + kpn+2)p

= (1 + pn+1(m+ kp))p

= 1 + pn+2(m+ kp) +

(
p

2

)
p2(n+1)(m+ kp)2 + · · ·

≡ 1 +mpn+2 (mod pn+3)

which concludes the inductive step.

4. Let p > 2 be a prime number. Show that if g is a primitive root modulo p then a = gp
n−1

(1 + p)
is a primitive root modulo pn, i.e., a ∈ (Z/pnZ)× has order ϕ(pn) and therefore (Z/pnZ)× is cyclic
generated by a. [Hint: Use the previous exercise.]

Proof. Since |(Z/pnZ)×| = ϕ(pn) it follows that the multiplicative order of a divides ϕ(pn). To check
that it is equal to it we’ll apply a problem from homework 6. We have to check that aϕ(p

n)/q 6≡ 1
(mod pn) for every prime q | ϕ(pn) = pn−1(p− 1).

If q = p we compute

aϕ(p
n)/q = ap

n−2(p−1) = gp
2n−3(p−1)(1+p)p

n−2(p−1) ≡ (1+p)p
n−2(p−1) ≡ 1+(p−1)pn−1 (mod pn) 6≡ 1 (mod pn)

since g has order | ϕ(pn) and also applying the previous problem.

If q | p − 1, then ϕ(pn)/q = pn−1k where k = (p − 1)/q. From the previous problem (1 + p)ϕ(p
n)/q =

(1 + p)p
n−1k ≡ 1 (mod pn) and so

aϕ(p
n)/q ≡ gp

n−1k (mod pn)

If this were ≡ 1 (mod pn) it would also be ≡ 1 (mod p) BUT

gp
n−1k ≡ gk (mod p)

(since gp−1 ≡ 1 (mod p)) which contradicts the fact that g has order p − 1 modulo p and therefore
gk 6≡ 1 (mod p) for k = (p− 1)/q.
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5. Let G = 〈g〉 be a cyclic group of order n. Recall that ϕ is Euler’s function defined as ϕ(m) = |(Z/mZ)×|
equals the number of integers 1 ≤ k < m which are coprime to m.

(a) Show that gk has order d if and only if k = nr/d for r coprime to d.

(b) For a divisor d | n show that there are exactly ϕ(d) elements of G of order exactly d. (In particular
G has exactly ϕ(n) generators.)

(c) Deduce the identity
∑
d|n

ϕ(d) = n. [Hint: Apply part (a) to all the divisors of n.]

Proof. (a): The order of gk from class is n/(k, n) which is equal to d if and only if (k, n) = n/d. This
means that n/d | k and so k = nr/d for some r. Moreover, (k, n) = n(r, d)/d and so r must be coprime
to d.

(b): Since G = {1, g, g2, . . . , gn−1} it follows that the elements of order d are those gk with 0 ≤ k ≤ n−1
such that k = nr/d with r coprime to d. Equivalently the elements of order d are those gnr/d with
0 ≤ r < d with r coprime to d and by definition there’s exactly ϕ(d) such r.

(c): From a homework and from class any element of G has order | n. There’s a total of n elements
of G and each has order some divisor d | n. For each d | n let Gd be the subset of G of elements
of order d. Then G is a disjoint union of all Gd as d | n (e.g., because in class we showed that
having the same order is an equivalence relation and Gd are equivalence classes). We conclude that
n = |G| =

∑
d|n |Gd| =

∑
d|n ϕ(d).

6. Consider the complex number ζ = e2πi/10 which generates the cyclic group G = 〈ζ〉 of order 10. Show
that the only homomorphisms f : S3 → G are the trivial homomorphism and the sign homomorphism
ε(σ) ∈ {−1, 1}. (Note that ζ5 = −1 so {−1, 1} ⊂ 〈ζ〉.) [Hint: what is f(A3)?]

Proof. Since |f(A3)| | |A3| = 3 from the first isomorphism therem but also |f(A3)| | 10 as f(A3) is a
subgroup of 〈ζ〉, it follows that f(A3) = 1. Recall that if σ = (12) and τ = (123) then A3 = {1, τ, τ2}
and S3 = {1, τ, τ2, σ, στ, στ2} = {σaτ b | a = 0, 1, b = 0, 1, 2}. Since f(σaτ b) = f(σ)a it follows that f
is uniquely determined by f(σ). As σ2 = 1 it follows that f(σ)2 = 1 and 〈ζ〉, being cyclic, contains
exactly 2 elements whose square is 1 (e.g., from the previous problem is has ϕ(2) = 1 elements of order
2, plus the identity). Thus f(σ) = ±1.

If f(σ) = 1 then f is the trivial homomorphism. If f(σ) = −1 then f(στ b) = −1 and visibly f = ε.

7. (a) Suppose p ≡ 3 (mod 4) is a prime. If y ≡ x2 (mod p) show that x ≡ ±y(p+1)/4 (mod p). [Hint:
start by showing that x2 ≡ y (mod p) can have at most 2 solutions.]

(b) Consider p = 503 and q = 991, both ≡ 3 (mod 4). I tell you that x2 ≡ 76472 (mod pq).
What is x mod pq? [Feel free to use wolfram alpha for computations. I’m giving you that
991 · 67− 132 · 503 = 1. It’s easier to use the Chinese Remainder Theorem.]

Rabin’s cryptosystem sends x to x2 mod pq for two primes p 6= q, both ≡ 3 (mod 4), and you just
produced a decryption algorithm.

Proof. (a): If u2 ≡ v2 (mod p) it follows that p | u2 − v2 = (u − v)(u + v) and so u ≡ ±v (mod p).
Thus to show that x ≡ ±y(p+1)/4 (mod p) it suffices to check that x2 ≡ y(p+1)/2 (mod p). But

y(p+1)/2 ≡ (x2)(p+1)/2 ≡ xp+1 ≡ x2 (mod p)

from Fermat’s little theorem.

(b): From part (a) we know that x ≡ ±76472(p+1)/4 (mod p) ≡ ±4 and x ≡ ±76473(q+1)/4 (mod q) ≡
±− 34. From homework 6 (explicit CRT) and the Bezout provided in the problem we know then that

x ≡ ±4 · 991 · 67 +±34 · 132 · 503 ≡ ±2016,±30687 (mod pq)
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8. (a) Show that if f ∈ Aut(S3) then f(σ) ∈ {(12), (13), (23)} and f(τ) ∈ {(123), (132)}. [Recall that
σ = (12) and τ = (123) generate S3.]

(b) Deduce that Aut(S3) ∼= S3. [Hint: Use part (a) to show that Aut(S3) has at most 6 elements.
What is Inn(S3) ⊂ Aut(S3)?]

Proof. (a): If f is an automorphism then f(gk) = f(gk) so gk = 1 iff f(g)k = 1 so f(g) and g have the
same order. Now σ has order 2 so f(σ) has order 2 so f(σ) is one of the 3 transpositions in the list.
Also τ has order 3 so f(τ) is one of the 2 3-cycles.

(b): Since f(σ) and f(τ) uniquely determine f as S3 is generated by σ and τ , it follows that the
total number of automorphisms is at most 3 · 2 = 6, with 3 choices for f(σ) and 2 choices for f(τ).
It’s not guaranteed that all these 6 possibilities are realizable. However, Inn(S3) ∼= S3/Z(S3) = S3

(from class) has 6 elements and Inn(S3) ⊂ Aut(S3) where the RHS has at most 6 elements. Thus
Aut(S3) = Inn(S3) ∼= S3.

9. Write F2 instead of Z/2Z.

(a) Show that GL(2,F2) permutes the three nonzero vectors in F2
2.

(b) Deduce that GL(2,F2) ∼= S3.

Proof. (a): If g ∈ GL(2,F2) then g is invertible and so gv = 0 iff v = 0. If X = {(1, 0), (0, 1), (1, 1)} are
the 3 nonzero vectors in F2

2, it follows that gx ∈ X for every x ∈ X. If gx = gy for x, y ∈ X, again as g
is invertible (in fact det(g) ∈ F×2 = 1 so g−1 = g∗ is the cofactor matrix directly) we deduce that x = y.
Thus multiplication by g is injective on X so therefore it is also surjective, yielding a permutation of
X.

We know from class that multiplying matrices is the same as composing the linear maps they define

so we deduce that GL(2,F2) → Permutations(X) = S3 is a homomorphism. The matrix

(
1 1

1

)
clearly yields a transposition in S3 (interchanges (0, 1) and (1, 1) while the matrix

(
1

1

)
yields a

different transposition. This means that the image of GL(2,F2) in S3 is a group (as the image of a
homomorphism) which contains 2 transpositions. From class we know the subgroups of S3 and thus
the image has to be all of S3. Finally, what is the kernel of GL(2,F2)→ S3? If gx = x for every x ∈ X

for some g =

(
a b
c d

)
∈ GL(2,F2), then plugging this matrix into the 3 formulae we get that a = d = 1

and b = c = 0 so g = I2. We deduce that GL(2,F2) ∼= S3.

10. Let H = Z/2Z and N = Z/8Z and consider φ : H → Aut(N) defined as φ(x) = 3x. Consider
R,F ∈ G := N oφ H defined as R = (0, 1) and F = (1, 0). Show that F and R generate G, F has
order 2, R has order 8 and FRF = R3.

Proof. The multiplication map in G is (0, x)(b, y) = (b, x + y) and (1, x)(b, y) = (1 + b, x + 3y) which
can be summarized as (a, x)(b, y) = (a+ b, x+ 3ay).

Therefore R2 = (0, 1)(0, 1) = (0, 2) and by induction Rk = (0, k) so R has order 8 as k ∈ Z/8Z. Also
F 2 = (1, 0)(1, 0) = (0, 0) = 1. Finally, FRF = (1, 0)(0, 1)(1, 0) = (1, 3)(1, 0) = (0, 3) = R3. Finally,
R ∈ N generates N as it has order 8 and similarly F generates H. Therefore F and R generate
NH = G.
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