
Math 30810 Honors Algebra 3

Homework 8

Andrei Jorza

Due at noon on Thursday, October 27

Do 8 of the following questions. Some questions are obligatory. Artin a.b.c means chapter
a, section b, exercise c. You may use any problem to solve any other problem.

1. (You have to do this problem) A short exact sequence of groups is a sequence of group homomor-
phisms

1→ N
f−→ G

g−→ K → 1

such that f : N → G is injective, g : G → K is surjective, and Im f = ker g. A section of such an
exact sequence is defined to be a group homomorphism s : K → G such that g ◦ s = idK .

(a) Show that in the short exact sequence above N ∼= f(N) CG and G/f(N) ∼= K.

(b) Suppose that the exact sequence above admits a section s : K → G. Show that for every x ∈ G
one can find n ∈ N such that x = f(n)s(g(x)) and deduce that G ∼= N o K is a semidirect
product.

(c) (Extra credit) Show that if G ∼= NoK then one can find an exact sequence 1→ N → G→ K → 1
that admits a section s : K → G.

Proof. (a): Since f is injective we have N ∼= Nf(N). Since f(N) = ker g it follows that f(N) =
ker g CG. Finally the 1st isomorphism theorem gives K = Im g ∼= G/ ker g = G/f(N).

(b): Note that x = f(n)s(g(x)) for some n ∈ N if and only if xs(g(x))−1 ∈ Im f . But Im f = ker g so it’s
enough to check that xs(g(x))−1 ∈ ker g: indeed g(xs(g(x))−1) = g(x)g(s(g(x)))−1 = g(x)g(x)−1 = 1
as g ◦ s = idK .

Define H = s(K) and N ′ = f(N) ∼= N as in part (a). Since g ◦ s = idK it follows that s is injective
and so H ∼= K via s. We’ll check that G ∼= N ′ oH ∼= N oK. From part (a) we know that N ′ C G.
If x ∈ N ′ ∩H then x = s(k) for some k ∈ K and x = f(n) for some n ∈ N . Thus g(x) = g(f(n)) = 1
but g(x) = g(s(k)) = k. We deduce that k = 1 and so x = s(1) = 1. Therefore N ′ ∩H = 1. Finally,
we already know that x = f(n)s(g(x)) for some n ∈ N and so G = N ′H. The criterion from class now
implies that G ∼= N ′ oH ∼= N oK as desired.

(c): If G ∼= N o K then from class the map f(n) = (1, n) gives an injection N ↪→ G and the map
s(k) = (k, 1) gives an injection K ↪→ G. Finally the map g((k, n)) = k, again from class, is a surjective

homomorphism G→ K with kernel N = Im f . This means that 1→ N
f−→ G

g−→ K → 1 is an exact
sequence and visibly g ◦ s = idK so s is a section.

2. Recall from class1 that the matrices S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
generate SL(2,Z).

1Actually in class I showed this with the inverse of the matrix S, but this is the more standard version of S
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(a) Show that SL(2,Z) = 〈S, ST 〉 and that the two generators S and ST have orders 4 respectively
6.

(b) (Do either this or the next part) Show that the only homomorphism f : SL(2,Z) → Z/7Z is the
trivial homomorphism. [Hint: It’s enough to see where the generators go.]

(c) (Do either this or the previous part) Show that every homomorphism f : SL(2,Z) → C× has
image Im f ⊂ µ12 = {z ∈ C× | z12 = 1}.

Proof. (a): Let R = ST . Then 〈S,R〉 is clearly ⊂ 〈S, T 〉 = SL(2,Z). Viceversa, T = S−1R so again

SL(2,Z) = 〈S, T 〉 = 〈S, S−1R〉 ⊂ 〈S,R〉. Finally, S2 = −I2 and R =

(
0 −1
1 1

)
, R2 =

(
−1 −1
1 0

)
,

R3 = −I2 and so S has order 4 and R has order 6.

(b): If f is a homomorphism then 4f(S) = f(S4) = 0 and 6f(R) = f(R6) = 0 in Z/7Z. But 4 and 6
are invertible mod 7 so f(R) = f(S) = 0 and we conclude that f = 0.

(c): As above f(S)4 = 1 and f(R)6 = 1 and so f(R), f(S) ∈ µ12 which implies that Im f ⊂ µ12.

3. Let ζ = e2πi/3, x =

(
0 −1
1 0

)
and y =

(
ζ 0
0 ζ−1

)
. Let G = 〈x, y〉 ⊂ GL(2,C) be the subgroups

generated by x and y.

(a) Show that x has order 4, y has order 3 and xy = y2x.

(b) Show that G has order 12 with G = {ybxa | 0 ≤ a < 4, 0 ≤ b < 3}.
(c) Show that G ∼= Z/3ZoφZ/4Z for some φ : Z/4Z→ Aut(Z/3Z). [Hint: Use the criterion for when

a group is a semidirect product.]

Proof. (a): Compute x2 = −I2, y3 = I2 to conclude that x has order 4 and y has order 3. Also

xy =

(
−ζ−1

ζ

)
and y2x =

(
−ζ2

ζ−2

)
= xy as ζ−1 = ζ2.

(b): Using xy = y2x, x−1 = x3 and y−1 = y2 one can write any product in 〈x, y〉 as a power ybxa with
0 ≤ b < 3 and 0 ≤ a < 4, simply by putting all y-s on the left and all x-s on the right. It suffices to
check that these are all distinct. But if ybxa = yb

′
xa

′
then yb−b

′
= xa

′−a and this cannot be unless
b ≡ b′ (mod 3) and a ≡ a′ (mod 4) as otherwise b − b′ is coprime to 3 so the LHS has order 3 while
the RHS has order dividing 4.

(c): Let N = 〈y〉 ⊂ G. Since xyx−1 = y2 it follows that N C G. Moreover, H ∼= Z/3Z. Let
H = 〈x〉 ⊂ G, H ∼= Z/4Z. As N and H have coprime orders, N ∩H = 1 and from part (b) G = NH.
Thus G ∼= N oH ∼= Z/3Z o Z/4Z.

4. Consider the homomorphism φ : S3 → Inn(S3) = Aut(S3) defined by φg(x) = gxg−1. Consider the
groups G0 = S3 oφ S3, G1 = S3 oφ A3 and G2 = A3 oφ A3.

(a) Show that G2
∼= (Z/3Z)2 [Hint: A3

∼= Z/3Z],

(b) Show that G2 CG1 with G1/G2
∼= Z/2Z,

(c) Show that G1 CG0 with G0/G1
∼= Z/2Z.

[Hint: To show normality you can use a criterion from a previous problem set. No need to do any
conjugation.]
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Proof. This problem looks harder than it is. Recall from a previous homework that if H is an index 2
subgroup of a group G then H CG.

(a): We have A3
∼= Z/3Z so G2 = A3oA3

∼= Z/3ZoZ/3Z. But in class we showed that Z/mZoZ/nZ ∼=
Z/mZ o Z/nZ when m is coprime to ϕ(n) and the result follows by applying this to m = n = 3.

(b): Since A3 has index 2 in S3 it follows that A3 oA3 has index 2 in S3 oA3 so G2 has index 2 in G1

which implies normality. Then G1/G2 has order 2 so it is Z/2Z.

(c): Again G1 = S3 oA3 has order 2 in G0 = S3 o S3 so G1 CG0 and the quotient is Z/2Z.

5. Show that Sn is generated by the transpositions (12), (23), . . . , (n− 1, n). [Hint: (23)(12)(23) = (13).
Recall that in class we showed that Sn is generated by all transpositions.]

Proof. It suffices to check that every transposition (ij) is in the group G generated by (12), (23), (34), . . .
because Sn is generated by all transpositions. We’ll prove this by induction on j − i. When j − i = 1
then (ij) ∈ G by assumption, this is the base case. Now suppose (ij) ∈ G. Then so is

(j, j + 1)(i, j)(j, j + 1) = (i, j + 1) ∈ G

6. (a) Show that (12 . . . n)(i, i+ 1)(12 . . . n)−1 = (i+ 1, i+ 2) for i+ 2 ≤ n.

(b) Show that (12 . . . n)k(12)(12 . . . n)−k = (k + 1, k + 2) for k + 2 ≤ n.

(c) Deduce that Sn is generated by (12) and (12 . . . n). [Hint: Use the previous problem.]

Proof. (a): Write τ for the cycle. i + 1 is mapped to i by τ−1, to i + 1 by the transposition then to
i+ 2 by τ . i+ 2 is mapped to i+ 1 by τ−1 then to i by the transposition then to i+ 1 by τ . Finally if
j 6= i+ 1, i+ 2 then j is mapped to j − 1 by τ−1, is fixed by the transposition and is mapped back to
j by τ .

(b): An immediate induction.

(c): The subgroup of Sn generated by (12) and (12 . . . n) contains, by part (b), all transpositions
(k, k + 1) and so by the previous problem it is Sn.

7. Consider Q as a group with respect to +. Show that every finitely generated subgroup of Q is of
the form qZ for some rational q ∈ Q. In other words, every finitely generated subgroup is cyclic so
generated by one single element.

Proof. If G = 〈m1

n1
, . . . , mk

nk
〉 ⊂ Q is finitely generated then G = {m1a1

n1
+ · · · + mkak

nk
| ai ∈ Z} and so

clearing denominators G ⊂ 1
NZ where N = [n1, n2, . . . , nk]. As a group 1

NZ ∼= Z and we know that

every subgroup of Z is of the form MZ and so G = M
N Z as desired.

8. Let G =

〈(
2 0
0 1

)
,

(
1 1
0 1

)〉
⊂ GL(2,R) and let H < G be the subgroup of G consisting of those

matrices with 1-s on the diagonal. Show that H is not finitely generated, i.e., there don’t exist finitely
many matrices g1, . . . , gn ∈ H such that H = 〈g1, g2, . . . , gn〉. [Hint: Show that H is a subgroup of{(

1 x
0 1

)
| x ∈ Q

}
∼= Q, but H contains matrices where the upper right corner is a rational with

arbitrarily large powers of 2 in the denominator. You may use Exercise 7.]
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Proof. Note that H is a subgroup of K = {
(

1 q
0

)
| q ∈ Q} and that K ∼= Q via the isomorphism

f :

(
1 q
0 1

)
7→ q (this we did in class). Then f(H) is a subgroup of Q and the previous problem would

imply that if H (and therefore also f(H)) were finitely generated then f(H) = m/nZ for some integers
m and n.

But

(
2

1

)k (
1 1

1

)(
2

1

)−k
=

(
1 2−k

1

)
∈ H and so 2−k ∈ f(H) for every k ∈ Z. Now if H

were finitely generated and f(H) = m/nZ then for 2k > n it’s clear that 2−k /∈ m/nZ so we get a
contradiction and thus H is not finitely generated.

9. Let n ≥ 3. Consider the dihedral group D2n = (Z/nZ) oφ (Z/2Z) where φ : Z/2Z → Aut(Z/nZ)
is defined by φ0 = idZ/nZ and φ1(x) = −x. Recall from class that if F = (1, 0) and R = (0, 1) (the
first coordinate in Z/2Z and the second coordinate in Z/nZ) then F has order 2, R has order n and
FRF = R−1, and D2n = 〈F,R〉. Suppose a, b ∈ Z/nZ. Show that Ra and FRb generate D2n (i.e.,
D2n = 〈Ra, FRb〉) if and only if a ∈ (Z/nZ)×. [Hint: Show that in an arbitrary product of Ra-s and
FRb-s and their inverses you can collect all the F -s on the left side.]

Proof. If a ∈ (Z/nZ)× let k be such that ak ≡ 1 (mod n). Writing f = FRb and r = Ra then R =
Rka = rk ∈ 〈r, f〉 and then F = FRbR−b = fR−b ∈ 〈r, f〉. We conclude that D2n = 〈R,F 〉 ⊂ 〈r, f〉 so
D2n is generated by Ra and FRb.

Now suppose that Ra and FRb do generated D2n. Note that 〈Ra, FRb〉 contains arbitrary products of
Ra, R−a, FRb and (FRb)−1 = FRb (FRbFRb = R−b+b = 1). We’ll show by induction on the number
of terms in such a product that 〈Ra, FRb〉 = {Rka | k ∈ Z} ∪ {FRb+ak | k ∈ Z}. This is clearly true
if the product consists of a single factor. To show the inductive step it suffices to show that if we
multiply an element of the RHS with either R±a or FRb then we still get an element of the RHS. But
Rak ·R±a = Ra(k±1), RakFRb = FRb−ak, FRb+akR±a = FRb+a(k±1) and FRb+akFRb = R−ak.

If the RHS is all of D2n it follows that 1 is in the RHS and it can only be 1 = Rak for some k ∈ Z.
But R has order n and so ak ≡ 1 (mod n) which implies a ∈ (Z/nZ)×.

10-11 (This counts as two problems) Let n ≥ 3 be an odd number. Consider the group homomorphism
φ : (Z/nZ)× → Aut(Z/nZ) given by φa(x) = ax. Recall that the dihedral group D2n = {FuRv | 0 ≤
u ≤ 1, 0 ≤ v < n}.

(a) For a ∈ (Z/nZ)× and b ∈ Z/nZ define Ψa,b(F
uRv) := (FRb)u(Ra)v. Show that Ψa,b ∈ Aut(D2n).

[Hint: Use the previous problem.]

(b) Show that Ψ : (Z/nZ) oφ (Z/nZ)× → Aut(D2n) is an injective group homomorphism.

(c) Show that Ψ is surjective, i.e., that every automorphism of D2n is of the form Ψa,b for some a
and b and conclude that

Aut(D2n) ∼= (Z/nZ) oφ (Z/nZ)×

[Hint: Use part (a).]

(d) (Extra credit) For a groupG the group of outer automorphisms is defined as Out(G) = Aut(G)/ Inn(G),
a group since Inn(G)CAut(G) from a previous homework. Show that Out(D2n) ∼= (Z/nZ)×/{±1}.

Proof. (a): By construction Ψa,b : D2n → D2n and the previous problem shows that Ψa,b is surjective.
Since Ψa,b is a surjective map between two sets of the same size it must also be injective. Finally, Ψa,b

is a homomorphism: Ψa,b(F
uRvF eRf ) = Ψa,b(F

u+eR(−1)ev+f ) = (FRb)u+e(Ra)(−1)
ev+f while

Ψa,b(F
uRv)Ψa,b(F

eRf ) = (FRb)u(Ra)v(FRb)e(Ra)f
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and the homomorphism condition follows from the fact that for e = 0, 1 one has

(FRb)e(Ra)v(FRb)e = (Ra)(−1)
ev

(b): Suppose (a, b), (c, d) ∈ Z/nZo(Z/nZ)× (with a, c ∈ (Z/nZ)× and b, d ∈ Z/nZ). In this semidirect
product one has (a, b)(c, d) = (ac, b+ ad). We compute

Ψa,b ◦Ψc,d(F ) = Ψa,b(FR
d) = FRb+ad = Ψac,b+ad(F )

Ψa,b ◦Ψc,d(R) = Ψa,b(R
c) = Rac = Ψac,b+ad(R)

Since Ψa,b◦Ψc,d and Ψac,b+ad agree on generators they are the same homomorphism and so (a, b) 7→ Ψa,b

satisfies Ψa,b ◦Ψc,d = Ψ(a,c)(b,d) and so Ψ : Z/nZ o (Z/nZ)× → Aut(D2n) is a group homomorphism.

(c): If f ∈ Aut(D2n) it follows that f(F ) has order 2 and f(R) has order n, as the order of f(x) is
the same as the order of x for any injective f (f(x)k = 1 iff f(xk = 1) iff xk = 1). The order of FRb

is 2 for any b and the order of Ra is n/(n, a). Since n is odd this can never be 2. Thus f(F ) = FRb

for some b and f(R) = Ra for some a such that n/(n, a) = n, i.e., for a ∈ (Z/nZ)×. This means that
f = Ψa,b and we know from part (a) that every Ψa,b is an automorphism. From part (b) we deduce
the isomorphism Aut(D2n) ∼= (Z/nZ) oφ (Z/nZ)×.

(d): Since n is odd it follows that FRbRaFRb = R−a 6= Ra for any exponent a (otherwise R2a = 1 but
then a = 0 as 2 is invertible mod n) and so Z(D2n) = 1. This implies that Inn(D2n) ∼= D2n/Z(D2n) ∼=
D2n = Z/nZ o {±1}. Thus

Out(D2n) = Aut(D2n)/ Inn(D2n) =
Z/nZ o (Z/nZ)×

Z/nZ o {±1}
∼= (Z/nZ)×/{±1}

Here we used the 3rd isomorphism theorem as if K CH then

H/K ∼=
N oH/N

N oK/N
∼=
N oH

N oK
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