Math 30810 Honors Algebra 3 Homework 9

Andrei Jorza

Due at noon on Thursday, November 3

Do 8 of the following questions. Some questions are obligatory. Artin a.b.c means chapter a, section b, exercise c. You may use any problem to solve any other problem.

- 1-2 (Counts as 2 problems) Let G be a finite group and H a subgroup of G. Denote by $S_{G/H}$ the group of permutations of the finite set G/H. If G/H has k elements then $S_{G/H} \cong S_k$, the group operation on both sides being composition of permutations.
 - (a) Show that if $h \in H$ then the map $f_g : G/H \to G/H$ defined by f(xH) = gxH is a bijection, in other words $f_g \in S_{G/H}$.
 - (b) Show that the map $\Phi: G \to S_{G/H}$ given by $\Phi(g) = f_g$ is a group homomorphism with ker $\Phi \subset H$.
 - (c) Suppose the index [G:H] = p is the least prime divisor of the order |G|. Show that $|G/\ker \Phi| = p$ and deduce that H is normal in G. (This is a generalization of a previous homework problem that stated that index 2 subgroups are normal. Indeed 2 is the least prime divisor of every even order.) [Hint: what is the cardinality of $S_{G/H}$?]

3. For a matrix
$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2, \mathbb{R})$$
 and $z \in \mathbb{C}$ define, if possible, $g \cdot z = \frac{az+b}{cz+d}$

(a) Show that
$$\operatorname{Im}(g \cdot z) = \frac{\det(g) \operatorname{Im}(z)}{|cz+d|^2}$$

- (b) Show that $g \cdot z$ defined an action of the subgroup $\operatorname{GL}(2, \mathbb{R})^+$ of matrices with positive determinant on the set $\mathcal{H} = \{z \in \mathbb{C} | \operatorname{Im} z > 0\}.$
- (c) Compute the stabilizers $\operatorname{Stab}(i)$ and $\operatorname{Stab}(\zeta_3)$.
- (d) (Optional) Show that this action is transitive, i.e., all of \mathcal{H} is one orbit.
- 4. Recall from class that the group $GL(2,\mathbb{Z})$ acts via usual matrix multiplication on the left on \mathbb{Z}^2 .
 - (a) Suppose $u, v \neq 0$ are two integers. Show that there exist two integers w, t such that $\begin{pmatrix} u & w \\ v & t \end{pmatrix} \in GL(2,\mathbb{Z})$ if and only if (u, v) = 1.
 - (b) If $d \in \mathbb{Z}_{\geq 1}$ show that the orbit of $\begin{pmatrix} d \\ 0 \end{pmatrix}$ consists of vectors $\begin{pmatrix} a \\ b \end{pmatrix}$ with gcd (a, b) = d. [Hint: Use part (a).]
 - (c) Show that the set $S = \{ \begin{pmatrix} d \\ 0 \end{pmatrix} | d \in \mathbb{Z}_{\geq 0} \}$ parametrizes the orbits of $\operatorname{GL}(2,\mathbb{Z})$ acting on \mathbb{Z}^2 , i.e., every orbit contains a unique element from the set S. (You can think of S as a complete set of representatives for the orbits.) [Hint: Use part (b).]

- 5. Show that the matrices $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $A^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$ are conjugate in $GL(2, \mathbb{R})$ but not conjugate in $SL(2, \mathbb{R})$.
- 6. Artin 6.7.3 on page 190.
- 7. Artin 6.7.7 on page 191.
- 8. Artin 6.8.1 on page 191.
- 9. Artin 6.M.7 on page 194. (Careful: what Artin calls D_3 in part (a) we called D_6 , it is the dihedral group with 6 elements, isomorphic to S_3 .)
- 10. Artin 7.2.5 on page 221.