Math 30810 Honors Algebra 3 Homework 9

Andrei Jorza

Due at noon on Thursday, November 3

Do 8 of the following questions. Some questions are obligatory. Artin a.b.c means chapter a, section b, exercise c. You may use any problem to solve any other problem.

1-2 (Counts as 2 problems) Let G be a finite group and H a subgroup of G. Denote by $S_{G / H}$ the group of permutations of the finite set G / H. If G / H has k elements then $S_{G / H} \cong S_{k}$, the group operation on both sides being composition of permutations.
(a) Show that if $h \in H$ then the map $f_{g}: G / H \rightarrow G / H$ defined by $f(x H)=g x H$ is a bijection, in other words $f_{g} \in S_{G / H}$.
(b) Show that the map $\Phi: G \rightarrow S_{G / H}$ given by $\Phi(g)=f_{g}$ is a group homomorphism with $\operatorname{ker} \Phi \subset H$.
(c) Suppose the index $[G: H]=p$ is the least prime divisor of the order $|G|$. Show that $|G / \operatorname{ker} \Phi|=p$ and deduce that H is normal in G. (This is a generalization of a previous homework problem that stated that index 2 subgroups are normal. Indeed 2 is the least prime divisor of every even order.) [Hint: what is the cardinality of $S_{G / H}$?]
3. For a matrix $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}(2, \mathbb{R})$ and $z \in \mathbb{C}$ define, if possible, $g \cdot z=\frac{a z+b}{c z+d}$.
(a) Show that $\operatorname{Im}(g \cdot z)=\frac{\operatorname{det}(g) \operatorname{Im}(z)}{|c z+d|^{2}}$.
(b) Show that $g \cdot z$ defined an action of the subgroup $G L(2, \mathbb{R})^{+}$of matrices with positive determinant on the set $\mathcal{H}=\{z \in \mathbb{C} \mid \operatorname{Im} z>0\}$.
(c) Compute the stabilizers $\operatorname{Stab}(i)$ and $\operatorname{Stab}\left(\zeta_{3}\right)$.
(d) (Optional) Show that this action is transitive, i.e., all of \mathcal{H} is one orbit.
4. Recall from class that the group $\mathrm{GL}(2, \mathbb{Z})$ acts via usual matrix multiplication on the left on \mathbb{Z}^{2}.
(a) Suppose $u, v \neq 0$ are two integers. Show that there exist two integers w, t such that $\left(\begin{array}{ll}u & w \\ v & t\end{array}\right) \in$ $\mathrm{GL}(2, \mathbb{Z})$ if and only if $(u, v)=1$.
(b) If $d \in \mathbb{Z}_{\geq 1}$ show that the orbit of $\binom{d}{0}$ consists of vectors $\binom{a}{b}$ with $\operatorname{gcd}(a, b)=d$. [Hint: Use part (a).]
(c) Show that the set $S=\left\{\left.\binom{d}{0} \right\rvert\, d \in \mathbb{Z}_{\geq 0}\right\}$ parametrizes the orbits of $\mathrm{GL}(2, \mathbb{Z})$ acting on \mathbb{Z}^{2}, i.e., every orbit contains a unique element from the set S. (You can think of S as a complete set of representatives for the orbits.) [Hint: Use part (b).]
5. Show that the matrices $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $A^{-1}=\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$ are conjugate in $\mathrm{GL}(2, \mathbb{R})$ but not conjugate in $\operatorname{SL}(2, \mathbb{R})$.
6. Artin 6.7.3 on page 190 .
7. Artin 6.7 .7 on page 191.
8. Artin 6.8 .1 on page 191.
9. Artin 6.M. 7 on page 194. (Careful: what Artin calls D_{3} in part (a) we called D_{6}, it is the dihedral group with 6 elements, isomorphic to S_{3}.)
10. Artin 7.2 .5 on page 221.

