Math 30810 Honors Algebra 3
Homework 9

Andrei Jorza

Due at noon on Thursday, November 3

Do 8 of the following questions. Some questions are obligatory. Artin a.b.c means chapter
a, section b, exercise c. You may use any problem to solve any other problem.

1-2 (Counts as 2 problems) Let G be a finite group and H a subgroup of G. Denote by S, g the group of
permutations of the finite set G/H. If G/H has k elements then Sg, i = Sy, the group operation on
both sides being composition of permutations.

(a) Show that if h € H then the map f, : G/H — G/H defined by f(xH) = gxH is a bijection, in
other words f, € Sq,/p-

(b) Show that the map ® : G — S, given by ®(g) = f, is a group homomorphism with ker ® C H.

(¢) Suppose the index [G : H] = p is the least prime divisor of the order |G|. Show that |G/ker ®| = p
and deduce that H is normal in G. (This is a generalization of a previous homework problem
that stated that index 2 subgroups are normal. Indeed 2 is the least prime divisor of every even
order.) [Hint: what is the cardinality of S¢ /7]

Proof. (a): If fo(xH) = fq(yH) then grH = gyH so xH = yH so f, is injective. Multiplication by ¢
is surjective on G and so fy is also surjective. Thus f, is a permutation of G/H.

(b): If g,h € G, fyo fr(xH) = gheH = fyn(xH) so ® : G — S g is a group homomorphism. If
g € ker ® then f, =id so f,(H) = H. Thus gH = H so g € H and we deduce ker f C H.

(c): G/ker® = Im® which is a subgroup of Sg/y. By Lagrange |G/ker®| | [Sq,u| = p!. But
|G/ ker @] | |G| so |G/ker®| | (p!,|G]) = p. Thus ker® C H C G with [G : H|] = [G : ker 9] so

H = ker f which is then normal in G. O
. a b . ) az+b
3. For a matrix g = (c d) € GL(2,R) and z € C define, if possible, g - z = o
det(g) Im(2)

(b) Show that g-z defined an action of the subgroup GL(2, R)" of matrices with positive determinant
on the set H = {z € C|Im z > 0}.

(¢) Compute the stabilizers Stab(i) and Stab((3).
(d) (Optional) Show that this action is transitive, i.e., all of H is one orbit.



Proof. (a) Note that Im 2z = (2i)~!(z + Z) and so
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(b): If det g > 0 and Im z > 0 then by (a) Img-z > 0 so GL(2,R)* preserves H. Need to check action,
i.e., that (gh)-z=g-(h-z). But
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(c): We seek (i Z) such that Z:Ig =1, i.e, a=d and ¢ = —b so Stab(i) = {(_ab 2)} We now

seek a, b, ¢, d such that Zg;idb = (3 which multiplies out to al3 + b= c(3 + d(3 = —c+ (d — ¢)(3. Thus

a=d—cand b= —cso Stab(Cg):{<_ab aﬁb>}'
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and Im z = det (Zé T) > (0. Thus every z is in the orbit of 3.

(d): If z = x + iy then

. Recall from class that the group GL(2,7Z) acts via usual matrix multiplication on the left on Z2.

(a) Suppose u,v # 0 are two integers. Show that there exist two integers w, ¢ such that (:j 1:) €
GL(2,%) if and only if (u,v) = 1.

(b) If d € Z>1 show that the orbit of (g) consists of vectors (Z) with ged (a,b) = d. [Hint: Use
part (a).]

(c) Show that the set S = {(g) |d € Z>o} parametrizes the orbits of GL(2,Z) acting on Z2, i.e.,

every orbit contains a unique element from the set S. (You can think of S as a complete set of
representatives for the orbits.) [Hint: Use part (b).]

!
Proof. (a): If u = du’ and v = dv’ for d = (u,v) it follows that det Z 1:) = ddet Z, l:) and so
the LHS has determinant +1 implies that d = +1 so v and v are coprime. If u and v are coprime then
Bezout implies we can find w, ¢t such that ut — vw =1 and so det of the LHS is 1 as desired.
(b): Suppose (a,b) = dso a=a'dand b="Vd with (a’,b') = 1. Then there exist (Bezout) integers p, ¢
a

such that a’p+0'g=1. Let g = (—pb’ —qa’)' Then g- (Z) = (g) and det g = 1. Thus <b> is in the



orbit of (g) Reciprocally, suppose (f g) . (g) = (Z) Then pd = a and rd = b and so d | a,b.

But (p,7) =1 from part (a) so (a,b) = d.
b 0

(8) and <8) with a,b > 0 are in the same orbit iff a = (b,0) = b. O

(c): Ifv = (a) + (8) then v is in the orbit of ((a, b)) The zero vector is its own orbit. Clearly

. Consider the matrices A = (é 1) and B = <(1) _11) in SL(2,R). Show that A and B are conjugate

in GL(2,R) but not conjugate in SL(2,R).

Proof. If S = (1 _1) then SAS™! = B and since S € GL(2,R) the matrices are conjugate in

a b

the larger group. Let’s show A and B are not SL(2,R) conjugate. If g = (c d) € SL(2,R) then

detg=ad —bc=1andso g ' = ( d _b>. We compute

—C a

1—ac a?
-1 _
949~ = ( -2 1+ ac>

and since the top right corner of this conjugate is always a® > 0, no SL(2,R) conjugate of A can ever
be B whose top right corner is —1. O

. Artin 6.7.3 on page 190.

Proof. Write U = {u1,u2,ug} and V = {v1,v2,v3}. In both cases S5 acts transitively on U so O,,, = U.
From class we know that S3/Stab(x) is in bijection with O, and so we deduce that Stab(u;) is an
order 2 subgroup of S3. Again from class we know that Stab(oz) = o Stab(z)o~! and so by varying o
we deduce that every order 2 subgroup of S3 appears as a stabilizer for the action of S3 on U as the
order 2 subgroups of S3 form a conjugacy class in S3 (again from class). By reordering we can assume
that u; has stabilizer ((jk)) where ¢, 7,k = 1,2, 3 reordered.

(a): Applying the previous paragraph to ¥V we may assume that v; has stabilizer {((jk)). By definition
of stabilizers we see that Stab((u;,v;)) = Stab(u;) N Stab(v;) and therefore Stab((u;, v;)) = 1 unless
i = j in which case Stab((u;,v;)) = ((jk)). Again Oy, »,) is in bijection with S3/Stab((u;,v;)) and
the orbits disjointly cover U x V so by inspection we deduce the orbits of S3 on U x V are

O(u1,v1) - {(uiavi) | i = 1,273}
O(u17v2) = {(uivvj) | [ 75]}

(b): Clearly Stab(vy) = S3 by assumption. Moreover, Stab(vy) has order 3 so it must be Az. Since
g(ui,v1) = (gui,v1) it follows that U x {v1} is an orbit for S3. If r # 1, as in part (a) we get
Stab((u;, vr)) = Stab(u;) N Stab(v,) = ((jk)) N Az = 1 and so the orbit of (u;,v,) has cardinality 6.
We deduce that the orbits are

O(u1,v1) - {(ui’vl) | 1= 17233}
O(ul,vz) - {(U,‘,Uj) |.] 7é 1}



7. Artin 6.7.7 on page 191.

Proof. (a): First, clearly Oy = {0}.
If a1 # 0 then note that

al 0 ... 0 1 al
az 1 0 0 as
a, 0 1 0 an
so v = (a1,...,a,) € O,. Otherwise, suppose a; # 0. Consider the matrix S = (s;;) which has 1-s
on the diagonal in position (4,7) if ¢ # 1,k, s1 5 =1, sx,1 = 1 and S has 0-s everywhere else. Then the
above shows that v’ = (ax,az,...,ax_1,01,ak+1,--.) € O, and simply note that Sv’ = v so v € O,
as well.
1 1
(o) Stabler) = {9 € GL(®) | ger =1} = { e ) 0
n—1x1 *n—1xn—1

8. Artin 6.8.1 on page 191.

Proof. Indeed P x (Qx A) = P* (QAQ?) = PQAQ'P! = PQA(PQ)! = PQx+ A and I, * A = A so this
is an action. O

9. Artin 6.M.7 on page 194.

Proof. (a): Recall that Dg = {1, R, R?>, F, FR, FR?} where R rotates the equilateral triangle 1, (3, (3
and F flips it. The table is

1 ¢ @
1 T T T
R F F F
R? F F F
F T F F
FR |F T F
FR2|F F T

(b): We need to show that } . g |Stabg(s)| = >_,cq [{s € S| gs = s}[. Note that |S9 is the number
of trues on the row corresponding to g in the table. Also, |Stabg(s)| is the number of trues on the
column corresponding to s in the table. Now the LHS and the RHS count in different ways the total

number of trues in the table.

(c): We know that |G| = | Stabg(s)||Os| so now we compute

D189 =) |Stabg(s)|

geG seS

= _1GI/104]

sesS

= > > I6l/0]

orbitsO s€O

=>_|G|/0] x [O]
[6)
= |G| x number of orbits

as desired. O



10. Artin 7.2.5 on page 221.

a b

Proof. Write m(a,b) = <O 1

> . Let’s conjugate

m(a, bym(z,y)m(a,b)™" = m(z, ay + (1 — x)b)

We can vary a € (0,00) and b € R. If x # 1 it follows that we can vary b to get all matrices of the
form m(z,*) and so when x # 1 we get {m(z,z) | z € R} are equivalence classes. When z = 1 we
get that m(a, b)m(1,y)m(a,b)~ = m(1,ay) with a > 0. If y # 0 we can get all matrices of the form
m(1, z) where z and y have the same sign. Thus we get 3 more orbits: {I»}, {m(1,2) | z > 0} and
{m(1,z) | z < 0}. O



