Math 30810 Honors Algebra 3 Homework 9

Andrei Jorza

Due at noon on Thursday, November 3

Do 8 of the following questions. Some questions are obligatory. Artin a.b.c means chapter a, section b, exercise c. You may use any problem to solve any other problem.

1-2 (Counts as 2 problems) Let G be a finite group and H a subgroup of G. Denote by $S_{G / H}$ the group of permutations of the finite set G / H. If G / H has k elements then $S_{G / H} \cong S_{k}$, the group operation on both sides being composition of permutations.
(a) Show that if $h \in H$ then the map $f_{g}: G / H \rightarrow G / H$ defined by $f(x H)=g x H$ is a bijection, in other words $f_{g} \in S_{G / H}$.
(b) Show that the map $\Phi: G \rightarrow S_{G / H}$ given by $\Phi(g)=f_{g}$ is a group homomorphism with $\operatorname{ker} \Phi \subset H$.
(c) Suppose the index $[G: H]=p$ is the least prime divisor of the order $|G|$. Show that $|G / \operatorname{ker} \Phi|=p$ and deduce that H is normal in G. (This is a generalization of a previous homework problem that stated that index 2 subgroups are normal. Indeed 2 is the least prime divisor of every even order.) [Hint: what is the cardinality of $S_{G / H}$?]

Proof. (a): If $f_{g}(x H)=f_{g}(y H)$ then $g x H=g y H$ so $x H=y H$ so f_{g} is injective. Multiplication by g is surjective on G and so f_{g} is also surjective. Thus f_{g} is a permutation of G / H.
(b): If $g, h \in G, f_{g} \circ f_{h}(x H)=g h x H=f_{g h}(x H)$ so $\Phi: G \rightarrow S_{G / H}$ is a group homomorphism. If $g \in \operatorname{ker} \Phi$ then $f_{g}=$ id so $f_{g}(H)=H$. Thus $g H=H$ so $g \in H$ and we deduce $\operatorname{ker} f \subset H$.
(c): $G / \operatorname{ker} \Phi \cong \operatorname{Im} \Phi$ which is a subgroup of $S_{G / H}$. By Lagrange $|G / \operatorname{ker} \Phi|\left|\left|S_{G / H}\right|=p!\right.$. But $|G / \operatorname{ker} \Phi|||G|$ so $| G / \operatorname{ker} \Phi| |(p!,|G|)=p$. Thus $\operatorname{ker} \Phi \subset H \subset G$ with $[G: H]=[G: \operatorname{ker} \Phi]$ so $H=\operatorname{ker} f$ which is then normal in G.
3. For a matrix $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}(2, \mathbb{R})$ and $z \in \mathbb{C}$ define, if possible, $g \cdot z=\frac{a z+b}{c z+d}$.
(a) Show that $\operatorname{Im}(g \cdot z)=\frac{\operatorname{det}(g) \operatorname{Im}(z)}{|c z+d|^{2}}$.
(b) Show that $g \cdot z$ defined an action of the subgroup $G L(2, \mathbb{R})^{+}$of matrices with positive determinant on the set $\mathcal{H}=\{z \in \mathbb{C} \mid \operatorname{Im} z>0\}$.
(c) Compute the stabilizers $\operatorname{Stab}(i)$ and $\operatorname{Stab}\left(\zeta_{3}\right)$.
(d) (Optional) Show that this action is transitive, i.e., all of \mathcal{H} is one orbit.

Proof. (a) Note that $\operatorname{Im} z=(2 i)^{-1}(z+\bar{z})$ and so

$$
\begin{aligned}
\operatorname{Im} g \cdot z & =(2 i)^{-1}(g \cdot z+\overline{g \cdot z}) \\
& =(2 i)^{-1}\left(\frac{a z+b}{c z+d}+\frac{a \bar{z}+b}{c \bar{z}+d}\right) \\
& =(2 i)^{-1} \frac{(a d-b c)(z-\bar{z})}{(c z+d)(c \bar{z}+d)} \\
& =\frac{\operatorname{det} g \operatorname{Im} z}{|c z+d|^{2}}
\end{aligned}
$$

(b): If $\operatorname{det} g>0$ and $\operatorname{Im} z>0$ then by (a) $\operatorname{Im} g \cdot z>0$ so $G L(2, \mathbb{R})^{+}$preserves \mathcal{H}. Need to check action, i.e., that $(g h) \cdot z=g \cdot(h \cdot z)$. But

$$
\left(\begin{array}{cc}
m & n \\
p & q
\end{array}\right) \cdot\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z\right)=\frac{m \frac{a z+b}{c z+d}+n}{p \frac{a z+b}{c z+d}+q}=\frac{(a m+c n) z+m b+d n}{(a p+c q) z+b p+d q}=\left(\begin{array}{cc}
m & n \\
p & q
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z
$$

(c): We seek $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ such that $\frac{a i+b}{c i+d}=i$, i.e., $a=d$ and $c=-b$ so $\operatorname{Stab}(i)=\left\{\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)\right\}$. We now seek a, b, c, d such that $\frac{a \zeta_{3}+b}{c \zeta_{3}+d}=\zeta_{3}$ which multiplies out to $a \zeta_{3}+b=c \zeta_{3}^{2}+d \zeta_{3}=-c+(d-c) \zeta_{3}$. Thus $a=d-c$ and $b=-c$ so $\operatorname{Stab}\left(\zeta_{3}\right)=\left\{\left(\begin{array}{cc}a & b \\ -b & a-b\end{array}\right)\right\}$.
(d): If $z=x+i y$ then

$$
z=\left(\begin{array}{ll}
y & x \\
0 & 1
\end{array}\right) \cdot i
$$

and $\operatorname{Im} z=\operatorname{det}\left(\begin{array}{ll}y & x \\ 0 & 1\end{array}\right)>0$. Thus every z is in the orbit of i.
4. Recall from class that the group $\mathrm{GL}(2, \mathbb{Z})$ acts via usual matrix multiplication on the left on \mathbb{Z}^{2}.
(a) Suppose $u, v \neq 0$ are two integers. Show that there exist two integers w, t such that $\left(\begin{array}{ll}u & w \\ v & t\end{array}\right) \in$ $\mathrm{GL}(2, \mathbb{Z})$ if and only if $(u, v)=1$.
(b) If $d \in \mathbb{Z}_{\geq 1}$ show that the orbit of $\binom{d}{0}$ consists of vectors $\binom{a}{b}$ with $\operatorname{gcd}(a, b)=d$. [Hint: Use part (a).]
(c) Show that the set $S=\left\{\left.\binom{d}{0} \right\rvert\, d \in \mathbb{Z}_{\geq 0}\right\}$ parametrizes the orbits of $\mathrm{GL}(2, \mathbb{Z})$ acting on \mathbb{Z}^{2}, i.e., every orbit contains a unique element from the set S. (You can think of S as a complete set of representatives for the orbits.) [Hint: Use part (b).]

Proof. (a): If $u=d u^{\prime}$ and $v=d v^{\prime}$ for $d=(u, v)$ it follows that $\operatorname{det}\left(\begin{array}{ll}u & w \\ v & t\end{array}\right)=d \operatorname{det}\left(\begin{array}{ll}u^{\prime} & w \\ v^{\prime} & t\end{array}\right)$ and so the LHS has determinant ± 1 implies that $d= \pm 1$ so u and v are coprime. If u and v are coprime then Bezout implies we can find w, t such that $u t-v w=1$ and so det of the LHS is 1 as desired.
(b): Suppose $(a, b)=d$ so $a=a^{\prime} d$ and $b=b^{\prime} d$ with $\left(a^{\prime}, b^{\prime}\right)=1$. Then there exist (Bezout) integers p, q such that $a^{\prime} p+b^{\prime} q=1$. Let $g=\left(\begin{array}{cc}p & q \\ -b^{\prime} & -a^{\prime}\end{array}\right)$. Then $g \cdot\binom{a}{b}=\binom{d}{0}$ and $\operatorname{det} g=1$. Thus $\binom{a}{b}$ is in the
orbit of $\binom{d}{0}$. Reciprocally, suppose $\left(\begin{array}{ll}p & q \\ r & s\end{array}\right) \cdot\binom{d}{0}=\binom{a}{b}$. Then $p d=a$ and $r d=b$ and so $d \mid a, b$. $\operatorname{But}(p, r)=1$ from part (a) so $(a, b)=d$.
(c): If $v=\binom{a}{b} \neq\binom{ 0}{0}$ then v is in the orbit of $\binom{(a, b)}{0}$. The zero vector is its own orbit. Clearly $\binom{a}{0}$ and $\binom{b}{0}$ with $a, b \geq 0$ are in the same orbit iff $a=(b, 0)=b$.
5. Consider the matrices $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$ in $\operatorname{SL}(2, \mathbb{R})$. Show that A and B are conjugate in $\mathrm{GL}(2, \mathbb{R})$ but not conjugate in $\mathrm{SL}(2, \mathbb{R})$.

Proof. If $S=\left(\begin{array}{ll}1 & \\ & -1\end{array}\right)$ then $S A S^{-1}=B$ and since $S \in \mathrm{GL}(2, \mathbb{R})$ the matrices are conjugate in the larger group. Let's show A and B are not $\operatorname{SL}(2, \mathbb{R})$ conjugate. If $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}(2, \mathbb{R})$ then $\operatorname{det} g=a d-b c=1$ and so $g^{-1}=\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$. We compute

$$
g A g^{-1}=\left(\begin{array}{cc}
1-a c & a^{2} \\
-c^{2} & 1+a c
\end{array}\right)
$$

and since the top right corner of this conjugate is always $a^{2} \geq 0$, no $\operatorname{SL}(2, \mathbb{R})$ conjugate of A can ever be B whose top right corner is -1 .
6. Artin 6.7.3 on page 190 .

Proof. Write $U=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $V=\left\{v_{1}, v_{2}, v_{3}\right\}$. In both cases S_{3} acts transitively on U so $O_{u_{i}}=U$. From class we know that $S_{3} / \operatorname{Stab}(x)$ is in bijection with O_{x} and so we deduce that $\operatorname{Stab}\left(u_{i}\right)$ is an order 2 subgroup of S_{3}. Again from class we know that $\operatorname{Stab}(\sigma x)=\sigma \operatorname{Stab}(x) \sigma^{-1}$ and so by varying σ we deduce that every order 2 subgroup of S_{3} appears as a stabilizer for the action of S_{3} on U as the order 2 subgroups of S_{3} form a conjugacy class in S_{3} (again from class). By reordering we can assume that u_{i} has stabilizer $\langle(j k)\rangle$ where $i, j, k=1,2,3$ reordered.
(a): Applying the previous paragraph to V we may assume that v_{i} has stabilizer $\langle(j k)\rangle$. By definition of stabilizers we see that $\operatorname{Stab}\left(\left(u_{i}, v_{j}\right)\right)=\operatorname{Stab}\left(u_{i}\right) \cap \operatorname{Stab}\left(v_{j}\right)$ and therefore $\operatorname{Stab}\left(\left(u_{i}, v_{j}\right)\right)=1$ unless $i=j$ in which case $\operatorname{Stab}\left(\left(u_{i}, v_{i}\right)\right)=\langle(j k)\rangle$. Again $O_{\left(u_{i}, v_{j}\right)}$ is in bijection with $S_{3} / \operatorname{Stab}\left(\left(u_{i}, v_{j}\right)\right)$ and the orbits disjointly cover $U \times V$ so by inspection we deduce the orbits of S_{3} on $U \times V$ are

$$
\begin{aligned}
O_{\left(u_{1}, v_{1}\right)} & =\left\{\left(u_{i}, v_{i}\right) \mid i=1,2,3\right\} \\
O_{\left(u_{1}, v_{2}\right)} & =\left\{\left(u_{i}, v_{j}\right) \mid i \neq j\right\}
\end{aligned}
$$

(b): Clearly $\operatorname{Stab}\left(v_{1}\right)=S_{3}$ by assumption. Moreover, $\operatorname{Stab}\left(v_{2}\right)$ has order 3 so it must be A_{3}. Since $g\left(u_{i}, v_{1}\right)=\left(g u_{i}, v_{1}\right)$ it follows that $U \times\left\{v_{1}\right\}$ is an orbit for S_{3}. If $r \neq 1$, as in part (a) we get $\operatorname{Stab}\left(\left(u_{i}, v_{r}\right)\right)=\operatorname{Stab}\left(u_{i}\right) \cap \operatorname{Stab}\left(v_{r}\right)=\langle(j k)\rangle \cap A_{3}=1$ and so the orbit of $\left(u_{i}, v_{r}\right)$ has cardinality 6. We deduce that the orbits are

$$
\begin{aligned}
& O_{\left(u_{1}, v_{1}\right)}=\left\{\left(u_{i}, v_{1}\right) \mid i=1,2,3\right\} \\
& O_{\left(u_{1}, v_{2}\right)}=\left\{\left(u_{i}, v_{j}\right) \mid j \neq 1\right\}
\end{aligned}
$$

7. Artin 6.7 .7 on page 191.

Proof. (a): First, clearly $O_{0}=\{0\}$.
If $a_{1} \neq 0$ then note that

$$
\left(\begin{array}{cccc}
a_{1} & 0 & \ldots & 0 \\
a_{2} & 1 & 0 & \ldots \\
\vdots & & \ddots & \\
a_{n} & 0 & \ldots & 1
\end{array}\right)\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)
$$

so $v=\left(a_{1}, \ldots, a_{n}\right) \in O_{e_{1}}$. Otherwise, suppose $a_{k} \neq 0$. Consider the matrix $S=\left(s_{i j}\right)$ which has 1-s on the diagonal in position (i, i) if $i \neq 1, k, s_{1, k}=1, s_{k, 1}=1$ and S has 0 -s everywhere else. Then the above shows that $v^{\prime}=\left(a_{k}, a_{2}, \ldots, a_{k-1}, a_{1}, a_{k+1}, \ldots\right) \in O_{e_{1}}$ and simply note that $S v^{\prime}=v$ so $v \in O_{e_{1}}$ as well.
(b): $\operatorname{Stab}\left(e_{1}\right)=\left\{g \in \mathrm{GL}_{n}(\mathbb{R}) \mid g e_{1}=e_{1}\right\}=\left\{\left(\begin{array}{cc}1 & *_{1 \times n-1} \\ O_{n-1 \times 1} & *_{n-1 \times n-1}\end{array}\right)\right\}$.
8. Artin 6.8 .1 on page 191 .

Proof. Indeed $P *(Q * A)=P *\left(Q A Q^{t}\right)=P Q A Q^{t} P^{t}=P Q A(P Q)^{t}=P Q * A$ and $I_{n} * A=A$ so this is an action.
9. Artin 6.M. 7 on page 194.

Proof. (a): Recall that $D_{6}=\left\{1, R, R^{2}, F, F R, F R^{2}\right\}$ where R rotates the equilateral triangle $1, \zeta_{3}, \zeta_{3}^{2}$ and F flips it. The table is

	1	ζ_{3}	ζ_{3}^{2}
1	T	T	T
R	F	F	F
R^{2}	F	F	F
F	T	F	F
$F R$	F	T	F
$F R^{2}$	F	F	T

(b): We need to show that $\sum_{s \in S}\left|\operatorname{Stab}_{G}(s)\right|=\sum_{g \in G}|\{s \in S \mid g s=s\}|$. Note that $\mid S^{g}$ is the number of trues on the row corresponding to g in the table. Also, $\left|\operatorname{Stab}_{G}(s)\right|$ is the number of trues on the column corresponding to s in the table. Now the LHS and the RHS count in different ways the total number of trues in the table.
(c): We know that $|G|=\left|\operatorname{Stab}_{G}(s)\right|\left|O_{s}\right|$ so now we compute

$$
\begin{aligned}
\sum_{g \in G}\left|S^{g}\right| & =\sum_{s \in S}\left|\operatorname{Stab}_{G}(s)\right| \\
& =\sum_{s \in S}|G| /\left|O_{s}\right| \\
& =\sum_{\text {orbits } O} \sum_{s \in O}|G| /|O| \\
& =\sum_{O}|G| /|O| \times|O| \\
& =|G| \times \text { number of orbits }
\end{aligned}
$$

as desired.
10. Artin 7.2 .5 on page 221.

Proof. Write $m(a, b)=\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)$. Let's conjugate

$$
m(a, b) m(x, y) m(a, b)^{-1}=m(x, a y+(1-x) b)
$$

We can vary $a \in(0, \infty)$ and $b \in \mathbb{R}$. If $x \neq 1$ it follows that we can vary b to get all matrices of the form $m(x, *)$ and so when $x \neq 1$ we get $\{m(x, z) \mid z \in \mathbb{R}\}$ are equivalence classes. When $x=1$ we get that $m(a, b) m(1, y) m(a, b)^{-1}=m(1, a y)$ with $a>0$. If $y \neq 0$ we can get all matrices of the form $m(1, z)$ where z and y have the same sign. Thus we get 3 more orbits: $\left\{I_{2}\right\},\{m(1, z) \mid z>0\}$ and $\{m(1, z) \mid z<0\}$.

