Math 30810 Honors Algebra 3 Homework 10

Andrei Jorza

Due at noon on Thursday, November 10

Do 8 of the following questions. Some questions are obligatory. Artin a.b.c means chapter a, section b, exercise c. You may use any problem to solve any other problem.

- 1. Let $A, B \in M_{n \times n}(\mathbb{R})$ and suppose that there exists a complex matrix $S \in GL(n, \mathbb{C})$ such that $A = SBS^{-1}$. Write S = X + iY for two matrices $X, Y \in M_{n \times n}(\mathbb{R})$.
 - (a) Show that AX = XB and AY = YB.
 - (b) Show that for some real number r the matrix T = X + rY is in $GL(n, \mathbb{R})$ and $A = TBT^{-1}$.

(The point of this problem is to show that if two real matrices are conjugate over \mathbb{C} they are also conjugate over \mathbb{R} .)

- 2. (a) Show that (123) and (132) are not conjugate in A_3 or A_4 .
 - (b) (Do this or the next part) Show that if $n \ge 5$ is odd then (12...n) and (12...n, n-1) are not conjugate in A_n .
 - (c) (Do this or the previous part) Show that if $n \ge 6$ is even then $(12 \dots n 1)$ and $(12 \dots n 2, n)$ are not conjugate in A_n .
- 3. Let G be a group. If $g, h \in G$ are two conjugate elements show that there is a bijection between $\{x \in G \mid g = xhx^{-1}\}$ and $\operatorname{Stab}_G(h)$.
- 4. Let $n \ge 5$ and H a subgroup of S_n . Assume that H is not A_n or S_n . Show that $[S_n : H] \ge n$. [Hint: As in Problem 1-2 on homework 9 look at the homomorphism $S_n \to S_{S_n/H}$.]
- 5. Let p be a prime and G a nonabelian group of order p^3 . Show that [G, G] = Z(G).
- 6. Let $n \geq 3$ be odd. Find all conjugacy classes in the dihedral group D_{2n} .
- 7. (a) Show that $PSL(2, \mathbb{F}_3) := SL(2, \mathbb{F}_3) / \{\pm I_2\}$ has order 12.
 - (b) Show that in PSL(2, \mathbb{F}_3), $x = \begin{pmatrix} 1 & 1 \\ 1 \end{pmatrix}$ has order 3, $y = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ and $z = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ have order 2 and commute, and PSL(2, \mathbb{F}_3) = $\langle x, y, z \rangle$.
 - (c) Show that $PSL(2, \mathbb{F}_3) \cong (\mathbb{Z}/2\mathbb{Z})^2 \rtimes \mathbb{Z}/3\mathbb{Z}$ and conclude that $PSL(2, \mathbb{F}_3) \cong A_4$. [Hint: Show that $N = \langle y, z \rangle$ is normal in $PSL(2, \mathbb{F}_3)$. Recall that $GL(2, \mathbb{Z}/2\mathbb{Z}) \cong S_3$ from a previous homework and show that A_4 is a similar semidirect product that must be isomorphic to this one.]
- 8. (a) Suppose G is a group and $g, h \in G$. Show that gh and hg are conjugate.
 - (b) A permutation $\sigma \in S_3$ is said to be good if for every group G and every elements $g_1, g_2, g_3 \in G$, the two products $g_1g_2g_3$ and $g_{\sigma(1)}g_{\sigma(2)}g_{\sigma(3)}$ are conjugate in G. Show that σ is good if and only if $\sigma \in \langle (123) \rangle$. [Hint: conjugate matrices have the same trace.]
- 9. Artin 7.3.1 on page 222.
- 10. Artin 7.5.11 (a) on page 223.