Math 30810 Honors Algebra 3 Homework 10

Andrei Jorza

Due at noon on Thursday, November 10

Do 8 of the following questions. Some questions are obligatory. Artin a.b.c means chapter a , section b, exercise c. You may use any problem to solve any other problem.

1. Let $A, B \in M_{n \times n}(\mathbb{R})$ and suppose that there exists a complex matrix $S \in \operatorname{GL}(n, \mathbb{C})$ such that $A=$ $S B S^{-1}$. Write $S=X+i Y$ for two matrices $X, Y \in M_{n \times n}(\mathbb{R})$.
(a) Show that $A X=X B$ and $A Y=Y B$.
(b) Show that for some real number r the matrix $T=X+r Y$ is in $\operatorname{GL}(n, \mathbb{R})$ and $A=T B T^{-1}$.
(The point of this problem is to show that if two real matrices are conjugate over \mathbb{C} they are also conjugate over \mathbb{R}.)
2. (a) Show that (123) and (132) are not conjugate in A_{3} or A_{4}.
(b) (Do this or the next part) Show that if $n \geq 5$ is odd then $(12 \ldots n)$ and $(12 \ldots n, n-1)$ are not conjugate in A_{n}.
(c) (Do this or the previous part) Show that if $n \geq 6$ is even then $(12 \ldots n-1)$ and $(12 \ldots n-2, n)$ are not conjugate in A_{n}.
3. Let G be a group. If $g, h \in G$ are two conjugate elements show that there is a bijection between $\left\{x \in G \mid g=x h x^{-1}\right\}$ and $\operatorname{Stab}_{G}(h)$.
4. Let $n \geq 5$ and H a subgroup of S_{n}. Assume that H is not A_{n} or S_{n}. Show that $\left[S_{n}: H\right] \geq n$. [Hint: As in Problem 1-2 on homework 9 look at the homomorphism $S_{n} \rightarrow S_{S_{n} / H}$.]
5. Let p be a prime and G a nonabelian group of order p^{3}. Show that $[G, G]=Z(G)$.
6. Let $n \geq 3$ be odd. Find all conjugacy classes in the dihedral group $D_{2 n}$.
7. (a) Show that $\operatorname{PSL}\left(2, \mathbb{F}_{3}\right):=\operatorname{SL}\left(2, \mathbb{F}_{3}\right) /\left\{ \pm I_{2}\right\}$ has order 12.
(b) Show that in $\operatorname{PSL}\left(2, \mathbb{F}_{3}\right), x=\left(\begin{array}{ll}1 & 1 \\ & 1\end{array}\right)$ has order $3, y=\left(\begin{array}{cc} & -1 \\ 1 & \end{array}\right)$ and $z=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$ have order 2 and commute, and $\operatorname{PSL}\left(2, \mathbb{F}_{3}\right)=\langle x, y, z\rangle$.
(c) Show that $\operatorname{PSL}\left(2, \mathbb{F}_{3}\right) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2} \rtimes \mathbb{Z} / 3 \mathbb{Z}$ and conclude that $\operatorname{PSL}\left(2, \mathbb{F}_{3}\right) \cong A_{4}$. [Hint: Show that $N=\langle y, z\rangle$ is normal in $\operatorname{PSL}\left(2, \mathbb{F}_{3}\right)$. Recall that $\mathrm{GL}(2, \mathbb{Z} / 2 \mathbb{Z}) \cong S_{3}$ from a previous homework and show that A_{4} is a similar semidirect product that must be isomorphic to this one.]
8. (a) Suppose G is a group and $g, h \in G$. Show that $g h$ and $h g$ are conjugate.
(b) A permutation $\sigma \in S_{3}$ is said to be good if for every group G and every elements $g_{1}, g_{2}, g_{3} \in G$, the two products $g_{1} g_{2} g_{3}$ and $g_{\sigma(1)} g_{\sigma(2)} g_{\sigma(3)}$ are conjugate in G. Show that σ is good if and only if $\sigma \in\langle(123)\rangle$. [Hint: conjugate matrices have the same trace.]
9. Artin 7.3 .1 on page 222 .
10. Artin 7.5 .11 (a) on page 223 .
