Math 30810 Honors Algebra 3 Homework 10

Andrei Jorza

Due at noon on Thursday, November 10

Do 8 of the following questions. Some questions are obligatory. Artin a.b.c means chapter a, section b, exercise c. You may use any problem to solve any other problem.

1. Let $A, B \in M_{n \times n}(\mathbb{R})$ and suppose that there exists a complex matrix $S \in \operatorname{GL}(n, \mathbb{C})$ such that $A=$ $S B S^{-1}$. Write $S=X+i Y$ for two matrices $X, Y \in M_{n \times n}(\mathbb{R})$.
(a) Show that $A X=X B$ and $A Y=Y B$.
(b) Show that for some real number r the matrix $T=X+r Y$ is in $\operatorname{GL}(n, \mathbb{R})$ and $A=T B T^{-1}$.
(The point of this problem is to show that if two real matrices are conjugate over \mathbb{C} they are also conjugate over \mathbb{R}.)

Proof. (a): Since $A S=S B$ it follows that $A X+i A Y=X B+i Y B$. As A, B, X, Y are real matrices we conclude that $A X=X B$ and $A Y=Y B$.
(b): From (a) if $T=A+r B$ then $A T=T B$. Look at $\operatorname{det} T=\operatorname{det}(A+r B)$ which is a polynomial in r, call if $P(r) \in \mathbb{R}[X]$. Since $P(i)=\operatorname{det} S \neq 0$ it follows that P is not the zero polynomial and therefore it has finitely many real roots. Let $r \in \mathbb{R}$ be such that $P(r) \neq 0$ and then T is real, invertible and $A=T B T^{-1}$.
2. (a) Show that (123) and (132) are not conjugate in A_{3} or A_{4}.
(b) (Do this or the next part) Show that if $n \geq 5$ is odd then $(12 \ldots n)$ and $(12 \ldots n, n-1)$ are not conjugate in A_{n}.
(c) (Do this or the previous part) Show that if $n \geq 6$ is even then $(12 \ldots n-1)$ and $(12 \ldots n-2, n)$ are not conjugate in A_{n}.

Proof. We start with a claim: suppose $\sigma \in S_{n}$ and we know that σ permutes $\{1,2, \ldots, k\}$ and there exists a permutation $\tau \in S_{k}$ such that the cycles $(\sigma(1), \ldots, \sigma(k))=(\tau(1), \ldots, \tau(k))$ are equal. Then σ restricted to $\{1,2, \ldots, k\}$ is the permutation $\tau \cdot(1,2, \ldots, k)^{e}$ for some exponent e. The cycle $(\tau(1), \ldots, \tau(k))$ is the same as $(\tau(2), \ldots, \tau(k), \tau(1))$ which is the same as $(\tau(i), \tau(i+1), \ldots, \tau(k), \tau(1), \ldots, \tau(i-$ $1)$) for all i and these are the only sequences $\left(c_{1}, \ldots, c_{k}\right)$ which are equal to $(\tau(1), \ldots, \tau(k))$ as k-cycles. This means that $\sigma(1)=\tau(i), \sigma(2)=\tau(i+1), \ldots$ for some i and in this case $\sigma=\tau \cdot(1,2, \ldots, k)^{i-1}$.
(a): A_{3} is abelian so all conjugacy classes have one element. For A_{4}, suppose $(132)=\sigma(123) \sigma^{-1}$. From class we know that RHS is $(\sigma(1), \sigma(2), \sigma(3))$ which immediately gives $\sigma(4)=4$ as $\sigma(1), \sigma(2), \sigma(3)$ permute $1,2,3$ and therefore the sign of σ in S_{4} is the same as the sign of σ in S_{3}. Now the previous claim implies that $\sigma=\tau(1,2,3)^{e}$ for some e where $\tau=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right)=(2,3)$ so $\varepsilon(\sigma)=\varepsilon(\tau) \varepsilon((1,2,3))^{e}=-1$ which shows that the two 3 -cycles cannot be conjugate in A_{4}.
(b): As in (a) $(1,2, \ldots, n-2, n, n-1)=\sigma(1,2, \ldots, n) \sigma^{-1}$ iff $(\sigma(1), \ldots, \sigma(n))=(1,2, \ldots, n-2, n, n-1)$. The RHS is the cycle $(\tau(1), \ldots, \tau(n))$ where $\tau=(n-1, n)$ and the claim implies that $\sigma=\tau \cdot(1,2, \ldots, n)^{e}$ for some e and so $\varepsilon(\sigma)=\varepsilon(\tau) \varepsilon((1,2, \ldots, n))^{e}=-1$. We used that if n is odd then (12..n) is even.
(c): Note that $(n-2, n-1, n)(1,2, \ldots, n-2, n)(n-2, n-1, n)^{-1}=(1,2, \ldots, n-3, n-1, n-2)$ so if the two cycles are A_{n}-conjugate then so are $(1,2, \ldots, n-1)$ and $(1,2, \ldots, n-3, n-1, n-2)$ and we already proved in (b) that this is not possible.
3. Let G be a group. If $g, h \in G$ are two conjugate elements show that there is a bijection between $\left\{x \in G \mid g=x h x^{-1}\right\}$ and $\operatorname{Stab}_{G}(h)$.

Proof. Suppose $g=a h a^{-1}$ with $a \in G$. For $x \in G$ we have $x \in G$ such that $x h x^{-1}=g=a h a^{-1}$ iff $a^{-1} x h\left(a^{-1} x\right)^{-1}=h$ iff $a^{-1} x \in \operatorname{Stab}_{G}(h)$ iff $x \in a \operatorname{Stab}_{G}(h)$. The conclusion is immediate.
4. Let $n \geq 5$ and H a subgroup of S_{n}. Assume that H is not A_{n} or S_{n}. Show that $\left[S_{n}: H\right] \geq n$. [Hint: As in Problem 1-2 on homework 9 look at the homomorphism $\left.S_{n} \rightarrow S_{S_{n} / H}.\right]$

Proof. As in homework 9 we get a homomorphism $S_{n} \rightarrow S_{S_{n} / H}$ attaching to $\sigma \in S_{n}$ the permutation of S_{n} / H given by left multiplication by σ. We know that the kernel of this homomorphism is contained in H. Since ker is a normal subgroup of S_{n} it has to be 1 or A_{n} or S_{n}. The only subgroups of S_{n} that contain A_{n} are A_{n} and S_{n} and since H is assumed not to be A_{n} or S_{n} we conclude that ker $=1$ so the homomorphism $S_{n} \rightarrow S_{S_{n} / H}$ is an injection. Immediately we conclude, simply by comparing cardinalities, that $n!\leq\left[S_{n}: H\right]$! and so $\left[S_{n}: H\right] \geq n$.
5. Let p be a prime and G a nonabelian group of order p^{3}. Show that $[G, G]=Z(G)$.

Proof. For any $G, Z(G) \triangleleft G$. For $|G|=p^{3}$ we know that $Z(G)$ has order a nontrivial power of p from class. As G is not abelian we deduce that $Z(G)$ has order p or p^{2} (cannot be all p^{3} as then $Z(G)=G$. Now if $Z(G)$ had order p^{2} then $G / Z(G)$ would have order p which would have to be cyclic and we showed in class this is not possible. Therefore $Z(G)$ has order p.
Now $G / Z(G)$ has order p^{2} and from class we deduce that $G / Z(G)$ is abelian. From class we deduce that $Z(G)$ contains $[G, G]$. As G is not abelian $[G, G]$ is not trivial. But then $[G, G] \subset Z(G)$ is a nontrivial subgroup of $Z(G) \cong \mathbb{Z} / p \mathbb{Z}$ and since p is a prime we deduce $[G, G]=Z(G)$.
6. Let $n \geq 3$ be odd. Find all conjugacy classes in the dihedral group $D_{2 n}$.

Proof. Note that $R^{a} R^{b} R^{-a}=R^{b}$ and $F R^{a} R^{b} F R^{a}=R^{-b}$ so the conjugacy class of R^{b} is $\left\{R^{b}, R^{-b}\right\}$.
Now $R^{a} F R^{b} R^{-a}=F R^{b-2 a}$ while $F R^{a} F R^{b} F R^{a}=F R^{2 a-b}=F^{b-2(b-a)}$. We deduce that the conjugacy class of $F R^{b}$ is $\left\{F R^{b-2 a} \mid a \in \mathbb{Z}\right\}$.
If n is odd, R^{b} is never R^{-b} and multiplication by 2 on $\mathbb{Z} / n \mathbb{Z}$ is surjective so the conjugacy classes are $\{1\},\left\{R^{b}, R^{-b}\right\}$ as b varies from 1 to $(n-1) / 2$, and finally $\left\{F, F R, F R^{2}, \ldots, F R^{n-1}\right\}$.
If n is even then $R^{n / 2}=R^{-n / 2}$ and we get that the conjugacy classes are $\{1\},\left\{R^{n / 2}\right\},\left\{R^{b}, R^{-b}\right\}$ for $b=1, \ldots,(n-2) / 2,\left\{F, F R^{2}, F R^{4}, \ldots\right\}$ and $\left\{F R, F R^{3}, \ldots\right\}$.
7. (a) Show that $\operatorname{PSL}\left(2, \mathbb{F}_{3}\right):=\mathrm{SL}\left(2, \mathbb{F}_{3}\right) /\left\{ \pm I_{2}\right\}$ has order 12 .
(b) Show that in $\operatorname{PSL}\left(2, \mathbb{F}_{3}\right), x=\left(\begin{array}{ll}1 & 1 \\ & 1\end{array}\right)$ has order $3, y=\left(\begin{array}{cc} & -1 \\ 1 & \end{array}\right)$ and $z=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$ have order 2 and commute, and $\operatorname{PSL}\left(2, \mathbb{F}_{3}\right)=\langle x, y, z\rangle$.
(c) Show that $\operatorname{PSL}\left(2, \mathbb{F}_{3}\right) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2} \rtimes \mathbb{Z} / 3 \mathbb{Z}$ and conclude that $\operatorname{PSL}\left(2, \mathbb{F}_{3}\right) \cong A_{4}$. [Hint: Show that $N=\langle y, z\rangle$ is normal in $\operatorname{PSL}\left(2, \mathbb{F}_{3}\right)$. Recall that $\mathrm{GL}(2, \mathbb{Z} / 2 \mathbb{Z}) \cong S_{3}$ from a previous homework and show that A_{4} is a similar semidirect product that must be isomorphic to this one.]

Proof. (a): The order of $\operatorname{GL}\left(2, \mathbb{F}_{3}\right)$ is $\left(3^{2}-1\right)\left(3^{2}-3\right)=48$ and $\operatorname{SL}\left(2, \mathbb{F}_{3}\right)$ is the kernel of $\mathrm{GL}\left(2, \mathbb{F}_{3}\right) \rightarrow \mathbb{F}_{3}^{\times}$ given by determinant which is surjective. The first isomorphism theorem yields that $\operatorname{SL}\left(2, \mathbb{F}_{3}\right)$ has order 24. We quotient by a group of order 2 to get $\operatorname{PSL}\left(2, \mathbb{F}_{3}\right)$ has order 12.
(b): For orders and commutativity simply compute. Now $N=\langle y, z\rangle$ has order 4 and contains two elements of order 2 so it is isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{2}$. Also $H=\langle x\rangle$ has order 3 . Since $N \cap H=1$ by coprimality of orders we deduce that the expressions $\left\{x^{a} y^{b} z^{c} \mid 0 \leq a \leq 2, b, c=0,1\right\}$ are all distinct and therefore they exhaust $\operatorname{PSL}\left(2, \mathbb{F}_{3}\right)$.
(c): Since $\operatorname{PSL}\left(2, \mathbb{F}_{3}\right)=H N$ (we don't yet know that N is normal so a priori $H N$ is not a group and we don't know yet that $N H=H N$) to check that N is normal we only need to show that conjugating N by $x^{a} g$ with $g \in N$ is still N. Therefore we only need to check that $x^{a} N x^{-a}=N$ and so enough to check that $x N x^{-1}=N$. But $x y x^{-1}=z$ and $x z x^{-1}=y z$ and so $x y z x^{-1}=z$. As $\operatorname{PSL}\left(2, \mathbb{F}_{3}\right)=H N, H \cap N=1$ and N is normal we deduce that $\operatorname{PSL}\left(2, \mathbb{F}_{3}\right) \cong N \rtimes H \cong(\mathbb{Z} / 2 \mathbb{Z})^{2} \rtimes \mathbb{Z} / 3 \mathbb{Z}$ for some $\phi: \mathbb{Z} / 3 \mathbb{Z} \rightarrow \operatorname{Aut}(N) \cong \mathrm{GL}(2, \mathbb{Z} / 2 \mathbb{Z}) \cong S_{3}$. There are exactly 3 such homomorphisms, namely $\phi(1)=1, \phi(1)=(123)$ or $\phi(1)=(123)^{-1}$ in S_{3}. The trivial homomorphism would yield a direct product but $\operatorname{PSL}\left(2, \mathbb{F}_{3}\right)$ is not commutative. Therefore $\phi(1)$ is either (123) or its inverse. Let's check that both $\phi_{ \pm}(1)=(123)^{ \pm 1}$ yield isomorphic semidirect products. Consider the inversion map $a(x)=-x$ on $H \cong \mathbb{Z} / 3 \mathbb{Z}$. Then a is an automorphism and the fact that ϕ is a homomorphism implies that $\phi_{+}=\phi_{-} \circ a: H \rightarrow \operatorname{Aut}(N)$. But under $H \xrightarrow{a} H$ get

$$
N \rtimes_{\phi_{+}} H=N \rtimes_{\phi_{+}} a(H) \cong N_{\phi_{-}} \rtimes H
$$

and so $\operatorname{PSL}\left(2, \mathbb{F}_{3}\right) \cong N \rtimes H$ where the homomorphism is any of the two nontrivial homomorphisms $H \rightarrow \operatorname{Aut}(N)$.
Finally, we know from a previous homework that A_{4} has $\{1,(12)(34),(13)(24),(14)(23)\} \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$ as a normal subgroup and $\{(123)\} \cong \mathbb{Z} / 3 \mathbb{Z}$. Again we get $A_{4} \cong(\mathbb{Z} / 2 \mathbb{Z})^{2} \rtimes \mathbb{Z} / 3 \mathbb{Z}$ and since A_{4} is no abelian we deduce that the homomorphism is nontrivial. We already showed that for nontrivial homomorphisms we get isomorphic groups so $\operatorname{PSL}\left(2, \mathbb{F}_{3}\right) \cong A_{4}$.
8. (a) Suppose G is a group and $g, h \in G$. Show that $g h$ and $h g$ are conjugate.
(b) A permutation $\sigma \in S_{3}$ is said to be good if for every group G and every elements $g_{1}, g_{2}, g_{3} \in G$, the two products $g_{1} g_{2} g_{3}$ and $g_{\sigma(1)} g_{\sigma(2)} g_{\sigma(3)}$ are conjugate in G. Show that σ is good if and only if $\sigma \in\langle(123)\rangle$. [Hint: conjugate matrices have the same trace.]

Proof. (a): $g h=h^{-1} h g\left(h^{-1}\right)^{-1}$.
(b): If $\sigma \notin A_{3}$ then σ is a transposition. Let's suppose $\sigma=(23)$ as the others are analogous. Then note that if $g_{1}=\left(\begin{array}{ll}2 & \\ & 1\end{array}\right), g_{2}=\left(\begin{array}{ll} & 1 \\ 1 & \end{array}\right)$ and $g_{3}=\left(\begin{array}{ll}1 & x \\ & 1\end{array}\right)$ then $\operatorname{Tr}\left(g_{1} g_{2} g_{3}\right)=x$ whereas $\operatorname{Tr}\left(g_{1} g_{3} g_{2}\right)=2 x$. For $x \neq 0$ we deduce that $g_{1} g_{2} g_{3}$ cannot possibly be conjugate to $g_{\sigma(1)} g_{\sigma(2)} g_{\sigma(3)}=g_{1} g_{3} g_{2}$.
9. Artin 7.3 .1 on page 222 .

Proof. S is a disjoint union of orbits of G so $|S|=\sum\left|O_{s}\right|$. We know that $\left|O_{s}\right|=|G| /\left|\operatorname{Stab}_{G}(s)\right|$ so $\left|O_{s}\right|$ is a power of p. As $|S|$ is not divisible by p, the sum $\sum\left|O_{s}\right|$ is not divisible by p so at least one of the cardinalities $\left|O_{s}\right|$ is $p^{0}=1$. But then $O_{s}=\{s\}=\{g s \mid g \in G\}$ so s is a fixed point.
10. Artin 7.5 .11 (a) on page 223.

Proof. $C=\left\{\sigma p \sigma^{-1} \mid \sigma \in S_{n}\right\}=\left\{\sigma p \sigma^{-1} \mid \sigma \in A_{n}\right\} \cup\left\{\sigma p \sigma^{-1} \mid \sigma \notin A_{n}\right\}$. But $S_{n}-A_{n}=c A_{n}$ for any odd permutation $c \in S_{n}$ and so $C=\left\{\sigma p \sigma^{-1} \mid \sigma \in A_{n}\right\} \cup\left\{\sigma c p c^{-1} \sigma^{-1} \mid \sigma \in A_{n}\right\}$. But sets on the RHS are conjugacy classes in A_{n} so either they are equal or disjoint. We deduce that the S_{n} conjugacy class
C is either an entire A_{n} conjugacy class or a disjoint union of 2 of them. It is the former iff $\sigma c p c^{-1} \sigma^{-1}$ is in the first set for some $\sigma \in A_{n}$. But from Exercise 3 on this problem set, if $\sigma c p c^{-1} \sigma^{-1}=\tau p \tau^{-1}$ then $\tau^{-1} \sigma c \in C_{S_{n}}(p)$. But if $\sigma, \tau \in A_{n}$ then $\tau^{-1} \sigma c$ is odd and any odd permutation can be writted as $1^{-1} \sigma c$ for some $\sigma \in A_{n}$. Therefore the two A_{n} conjugacy class are the same if and only if $C_{S_{n}}(p)$ contains odd permutations.

