
Math 30810 Honors Algebra 3

Homework 10

Andrei Jorza

Due at noon on Thursday, November 10

Do 8 of the following questions. Some questions are obligatory. Artin a.b.c means chapter
a, section b, exercise c. You may use any problem to solve any other problem.

1. Let A,B ∈ Mn×n(R) and suppose that there exists a complex matrix S ∈ GL(n,C) such that A =
SBS−1. Write S = X + iY for two matrices X,Y ∈Mn×n(R).

(a) Show that AX = XB and AY = Y B.

(b) Show that for some real number r the matrix T = X + rY is in GL(n,R) and A = TBT−1.

(The point of this problem is to show that if two real matrices are conjugate over C they are also
conjugate over R.)

Proof. (a): Since AS = SB it follows that AX + iAY = XB + iY B. As A,B,X, Y are real matrices
we conclude that AX = XB and AY = Y B.

(b): From (a) if T = A+ rB then AT = TB. Look at detT = det(A+ rB) which is a polynomial in r,
call if P (r) ∈ R[X]. Since P (i) = detS 6= 0 it follows that P is not the zero polynomial and therefore
it has finitely many real roots. Let r ∈ R be such that P (r) 6= 0 and then T is real, invertible and
A = TBT−1.

2. (a) Show that (123) and (132) are not conjugate in A3 or A4.

(b) (Do this or the next part) Show that if n ≥ 5 is odd then (12 . . . n) and (12 . . . n, n − 1) are not
conjugate in An.

(c) (Do this or the previous part) Show that if n ≥ 6 is even then (12 . . . n− 1) and (12 . . . n− 2, n)
are not conjugate in An.

Proof. We start with a claim: suppose σ ∈ Sn and we know that σ permutes {1, 2, . . . , k} and there ex-
ists a permutation τ ∈ Sk such that the cycles (σ(1), . . . , σ(k)) = (τ(1), . . . , τ(k)) are equal. Then
σ restricted to {1, 2, . . . , k} is the permutation τ · (1, 2, . . . , k)e for some exponent e. The cycle
(τ(1), . . . , τ(k)) is the same as (τ(2), . . . , τ(k), τ(1)) which is the same as (τ(i), τ(i+1), . . . , τ(k), τ(1), . . . , τ(i−
1)) for all i and these are the only sequences (c1, . . . , ck) which are equal to (τ(1), . . . , τ(k)) as k-cycles.
This means that σ(1) = τ(i), σ(2) = τ(i+ 1), . . . for some i and in this case σ = τ · (1, 2, . . . , k)i−1.

(a): A3 is abelian so all conjugacy classes have one element. For A4, suppose (132) = σ(123)σ−1.
From class we know that RHS is (σ(1), σ(2), σ(3)) which immediately gives σ(4) = 4 as σ(1), σ(2), σ(3)
permute 1, 2, 3 and therefore the sign of σ in S4 is the same as the sign of σ in S3. Now the previous claim

implies that σ = τ(1, 2, 3)e for some e where τ =

(
1 2 3
1 3 2

)
= (2, 3) so ε(σ) = ε(τ)ε((1, 2, 3))e = −1

which shows that the two 3-cycles cannot be conjugate in A4.
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(b): As in (a) (1, 2, . . . , n−2, n, n−1) = σ(1, 2, . . . , n)σ−1 iff (σ(1), . . . , σ(n)) = (1, 2, . . . , n−2, n, n−1).
The RHS is the cycle (τ(1), . . . , τ(n)) where τ = (n−1, n) and the claim implies that σ = τ ·(1, 2, . . . , n)e

for some e and so ε(σ) = ε(τ)ε((1, 2, . . . , n))e = −1. We used that if n is odd then (12 . . . n) is even.

(c): Note that (n− 2, n− 1, n)(1, 2, . . . , n− 2, n)(n− 2, n− 1, n)−1 = (1, 2, . . . , n− 3, n− 1, n− 2) so if
the two cycles are An-conjugate then so are (1, 2, . . . , n− 1) and (1, 2, . . . , n− 3, n− 1, n− 2) and we
already proved in (b) that this is not possible.

3. Let G be a group. If g, h ∈ G are two conjugate elements show that there is a bijection between
{x ∈ G | g = xhx−1} and StabG(h).

Proof. Suppose g = aha−1 with a ∈ G. For x ∈ G we have x ∈ G such that xhx−1 = g = aha−1 iff
a−1xh(a−1x)−1 = h iff a−1x ∈ StabG(h) iff x ∈ a StabG(h). The conclusion is immediate.

4. Let n ≥ 5 and H a subgroup of Sn. Assume that H is not An or Sn. Show that [Sn : H] ≥ n. [Hint:
As in Problem 1-2 on homework 9 look at the homomorphism Sn → SSn/H .]

Proof. As in homework 9 we get a homomorphism Sn → SSn/H attaching to σ ∈ Sn the permutation
of Sn/H given by left multiplication by σ. We know that the kernel of this homomorphism is contained
in H. Since ker is a normal subgroup of Sn it has to be 1 or An or Sn. The only subgroups of Sn
that contain An are An and Sn and since H is assumed not to be An or Sn we conclude that ker = 1
so the homomorphism Sn → SSn/H is an injection. Immediately we conclude, simply by comparing
cardinalities, that n! ≤ [Sn : H]! and so [Sn : H] ≥ n.

5. Let p be a prime and G a nonabelian group of order p3. Show that [G,G] = Z(G).

Proof. For any G, Z(G) CG. For |G| = p3 we know that Z(G) has order a nontrivial power of p from
class. As G is not abelian we deduce that Z(G) has order p or p2 (cannot be all p3 as then Z(G) = G.
Now if Z(G) had order p2 then G/Z(G) would have order p which would have to be cyclic and we
showed in class this is not possible. Therefore Z(G) has order p.

Now G/Z(G) has order p2 and from class we deduce that G/Z(G) is abelian. From class we deduce
that Z(G) contains [G,G]. As G is not abelian [G,G] is not trivial. But then [G,G] ⊂ Z(G) is a
nontrivial subgroup of Z(G) ∼= Z/pZ and since p is a prime we deduce [G,G] = Z(G).

6. Let n ≥ 3 be odd. Find all conjugacy classes in the dihedral group D2n.

Proof. Note that RaRbR−a = Rb and FRaRbFRa = R−b so the conjugacy class of Rb is {Rb, R−b}.
Now RaFRbR−a = FRb−2a while FRaFRbFRa = FR2a−b = F b−2(b−a). We deduce that the conju-
gacy class of FRb is {FRb−2a | a ∈ Z}.
If n is odd, Rb is never R−b and multiplication by 2 on Z/nZ is surjective so the conjugacy classes are
{1}, {Rb, R−b} as b varies from 1 to (n− 1)/2, and finally {F, FR, FR2, . . . , FRn−1}.
If n is even then Rn/2 = R−n/2 and we get that the conjugacy classes are {1}, {Rn/2}, {Rb, R−b} for
b = 1, . . . , (n− 2)/2, {F, FR2, FR4, . . .} and {FR,FR3, . . .}.

7. (a) Show that PSL(2,F3) := SL(2,F3)/{±I2} has order 12.

(b) Show that in PSL(2,F3), x =

(
1 1

1

)
has order 3, y =

(
−1

1

)
and z =

(
1 1
1 −1

)
have order

2 and commute, and PSL(2,F3) = 〈x, y, z〉.
(c) Show that PSL(2,F3) ∼= (Z/2Z)2 o Z/3Z and conclude that PSL(2,F3) ∼= A4. [Hint: Show that

N = 〈y, z〉 is normal in PSL(2,F3). Recall that GL(2,Z/2Z) ∼= S3 from a previous homework and
show that A4 is a similar semidirect product that must be isomorphic to this one.]
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Proof. (a): The order of GL(2,F3) is (32−1)(32−3) = 48 and SL(2,F3) is the kernel of GL(2,F3)→ F×
3

given by determinant which is surjective. The first isomorphism theorem yields that SL(2,F3) has order
24. We quotient by a group of order 2 to get PSL(2,F3) has order 12.

(b): For orders and commutativity simply compute. Now N = 〈y, z〉 has order 4 and contains two
elements of order 2 so it is isomorphic to (Z/2Z)2. Also H = 〈x〉 has order 3. Since N ∩ H = 1 by
coprimality of orders we deduce that the expressions {xaybzc | 0 ≤ a ≤ 2, b, c = 0, 1} are all distinct
and therefore they exhaust PSL(2,F3).

(c): Since PSL(2,F3) = HN (we don’t yet know that N is normal so a priori HN is not a group
and we don’t know yet that NH = HN) to check that N is normal we only need to show that
conjugating N by xag with g ∈ N is still N . Therefore we only need to check that xaNx−a = N
and so enough to check that xNx−1 = N . But xyx−1 = z and xzx−1 = yz and so xyzx−1 = z. As
PSL(2,F3) = HN , H ∩N = 1 and N is normal we deduce that PSL(2,F3) ∼= NoH ∼= (Z/2Z)2oZ/3Z
for some φ : Z/3Z → Aut(N) ∼= GL(2,Z/2Z) ∼= S3. There are exactly 3 such homomorphisms,
namely φ(1) = 1, φ(1) = (123) or φ(1) = (123)−1 in S3. The trivial homomorphism would yield a
direct product but PSL(2,F3) is not commutative. Therefore φ(1) is either (123) or its inverse. Let’s
check that both φ±(1) = (123)±1 yield isomorphic semidirect products. Consider the inversion map
a(x) = −x on H ∼= Z/3Z. Then a is an automorphism and the fact that φ is a homomorphism implies

that φ+ = φ− ◦ a : H → Aut(N). But under H
a−→ H get

N oφ+ H = N oφ+ a(H) ∼= Nφ− oH

and so PSL(2,F3) ∼= N o H where the homomorphism is any of the two nontrivial homomorphisms
H → Aut(N).

Finally, we know from a previous homework that A4 has {1, (12)(34), (13)(24), (14)(23)} ∼= (Z/2Z)2

as a normal subgroup and {(123)} ∼= Z/3Z. Again we get A4
∼= (Z/2Z)2 o Z/3Z and since A4 is

no abelian we deduce that the homomorphism is nontrivial. We already showed that for nontrivial
homomorphisms we get isomorphic groups so PSL(2,F3) ∼= A4.

8. (a) Suppose G is a group and g, h ∈ G. Show that gh and hg are conjugate.

(b) A permutation σ ∈ S3 is said to be good if for every group G and every elements g1, g2, g3 ∈ G,
the two products g1g2g3 and gσ(1)gσ(2)gσ(3) are conjugate in G. Show that σ is good if and only
if σ ∈ 〈(123)〉. [Hint: conjugate matrices have the same trace.]

Proof. (a): gh = h−1hg(h−1)−1.

(b): If σ /∈ A3 then σ is a transposition. Let’s suppose σ = (23) as the others are analogous. Then note

that if g1 =

(
2

1

)
, g2 =

(
1

1

)
and g3 =

(
1 x

1

)
then Tr(g1g2g3) = x whereas Tr(g1g3g2) = 2x.

For x 6= 0 we deduce that g1g2g3 cannot possibly be conjugate to gσ(1)gσ(2)gσ(3) = g1g3g2.

9. Artin 7.3.1 on page 222.

Proof. S is a disjoint union of orbits of G so |S| =
∑
|Os|. We know that |Os| = |G|/|StabG(s)| so

|Os| is a power of p. As |S| is not divisible by p, the sum
∑
|Os| is not divisible by p so at least one

of the cardinalities |Os| is p0 = 1. But then Os = {s} = {gs | g ∈ G} so s is a fixed point.

10. Artin 7.5.11 (a) on page 223.

Proof. C = {σpσ−1 | σ ∈ Sn} = {σpσ−1 | σ ∈ An} ∪ {σpσ−1 | σ /∈ An}. But Sn − An = cAn for any
odd permutation c ∈ Sn and so C = {σpσ−1 | σ ∈ An} ∪ {σcpc−1σ−1 | σ ∈ An}. But sets on the RHS
are conjugacy classes in An so either they are equal or disjoint. We deduce that the Sn conjugacy class
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C is either an entire An conjugacy class or a disjoint union of 2 of them. It is the former iff σcpc−1σ−1

is in the first set for some σ ∈ An. But from Exercise 3 on this problem set, if σcpc−1σ−1 = τpτ−1

then τ−1σc ∈ CSn
(p). But if σ, τ ∈ An then τ−1σc is odd and any odd permutation can be writted

as 1−1σc for some σ ∈ An. Therefore the two An conjugacy class are the same if and only if CSn
(p)

contains odd permutations.
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