Math 30810 Honors Algebra 3 Homework 11

Andrei Jorza
Due at noon on Thursday, November 17

Do 8 of the following questions. Some questions are obligatory. Artin a.b.c means chapter a, section b, exercise c. You may use any problem to solve any other problem.

1. Let p be a prime, $G=\operatorname{GL}\left(n, \mathbb{F}_{p}\right)$ and U the subgroup of upper triangular matrices with 1 -s on the diagonal.
(a) Show that U is a p-Sylow subgroup.
(b) Show that $N_{G}(U)$ is the group of upper triangular invertible matrices.
(c) Determine n_{p}.
2. Let R be a ring. An idempotent element of R is an element $e \in R$ such that $e^{2}=e$. Consider $e R=\{e x \mid x \in R\}$. Show that $\left(e R,+_{R}, \cdot_{R}, 0_{R}, e\right)$ is a ring.
3. Show that $\mathbb{C}[x] \llbracket y \rrbracket \neq \mathbb{C} \llbracket y \rrbracket[x]$.
4. Suppose R is an integral domain ring with fraction field F (i.e., F is the smallest field containing R as a subring). What is the fraction field of $R \llbracket x \rrbracket$.
5. Artin 9.5.6 on page 285. (A one-parameter group is a group of the form $\left\{e^{t A} \mid t \in \mathbb{R}\right\}$ where A is a matrix.)
6. Suppose $A \in M_{n \times n}(\mathbb{R}), B \in \mathrm{GL}(n, \mathbb{R})$ and $x \in \mathbb{R}$. Recall from a previous homework that exponentials of matrices are always invertible. Compute

$$
\left.\frac{d}{d x}\left[e^{x A}, B\right]_{\mathrm{GL}(n)}\right|_{x=0}
$$

where $[\cdot, \cdot]_{\mathrm{GL}(n)}$ is the usual group commutator in the group $\operatorname{GL}(n, \mathbb{R})$.
7. Let $A, B \in M_{n \times n}(\mathbb{R})$ and $x \in \mathbb{R}$. For general matrices write $[A, B]=A B-B A$. Show that

$$
e^{x A} e^{x B}=e^{x(A+B)+x^{2}[A, B] / 2+\text { higher order terms }}
$$

[Hint: Write out the first terms of the Taylor series of $\log \left(e^{x A} e^{x B}\right)$.]
8. Artin 11.1.6 on page 354 .
9. Artin 11.1.7 on page 354 .

10-11 (Counts as 2 problems) Artin 7.M. 12 on page 228.

