Math 30810 Honors Algebra 3
Homework 11

Andrei Jorza

Due at noon on Thursday, November 17

Do 8 of the following questions. Some questions are obligatory. Artin a.b.c means chapter
a, section b, exercise c. You may use any problem to solve any other problem.

1. Let p be a prime, G = GL(n,F,) and U the subgroup of upper triangular matrices with 1-s on the
diagonal.
(a) Show that U is a p-Sylow subgroup.
(b) Show that Ng(U) is the group of upper triangular invertible matrices.

(c) Determine n,,.

Proof. (a): |U| = p'+?++(=1) while | GL(2,F,)| = (" —1)(" —p) - -- (p* — p"~ ') and the latter has
largest power of p exactly p'+2++("=1)_ From a previous homework we already know that U was a
group and thus it has to be a Sylow group.

(b): Let A be the matrix with has 0-s under the diagonal and 1-s on and above the diagonal. If
X € Ng(U) then XAX ! = B where B € U and so XA = BX. Look at the last row of the product.

On the LHS this row is @51, Zn,1 +Zn2,. .., Tn,1+ -+ 2p,n while on the RHS it is 2y, 1,202, ..., Tpon-
We immediately deduce that z,1 = Tp2 = ... = Tpp—1 = 0. Write X = (}O/ f) where Y €

. . A % B« P
M, _1xn_1 and Z € M, _1x1 and similarly write A = 0 1 and B = 0 1 where A’, B" are

upper triangular unipotent. Since X A = BX this implies that (compare top left corners in the matrix
products) that YA’ = B’Y. Inductively we conclude that ¥ has to be upper triangular.
k
pt =1

(): mp = | GL(n, Fp)|/|U] =TT o1 o

2. Let R be a ring. An idempotent element of R is an element ¢ € R such that e? = e. Consider
eR = {ex | x € R}. Show that (eR,+g, r,0r,€) is a ring.

Proof. ex +0 =0+ ex = ex so 0 is a unit for +, ex - e = ¢ - ex = e2x = ex so0 e is a unit for -. Also

er+ey=e(x+y) and ex - ey = exy so eR is closed under + and -. O
3. Show that Clz][y] # Cly][z].

Proof. The series 1+ xy + 22y? + 23y + - -+ is in C[z][y] but certainly not in C[y][z] as the degree of
z is unbounded. O

4. Suppose R is an integral domain ring with fraction field F' (i.e., F' is the smallest field containing R as
a subring). What is the fraction field of R[z].



Proof. This was incorrectly stated in the original homework and the problem is not easy. We can chat
about it if you want. O

. Artin 9.5.6 on page 285. (A one-parameter group is a group of the form {e! | ¢t € R} where A is a
matrix. )

Proof. Write m(x,y) = (x xy1)- Then m(a, b)m(z,y)m(a,b)™t = m(z,ay + ab(z= — x)). When

xr # 271 ie, when x # 1, the map b — a?y + ab(x~! — z) is surjective and so the conjugacy class
of m(z,y) is m(x,*). Then x = 1, m(a,b)m(1,y)m(a,b)~* = m(1,a?y) and so the conjugacy class of
m(1,y) is {I2} when y =0, {m(1,> 0)} when y > 0 and {m(1,< 0)} when y < 0.

If {e! | t € R} C G then det e!* = T4 = 0 and so A has trace 0 which means that A has eigenvalues
a,—a. If a # 0 then A is diagonalizable so A = SBS~! with B = (a —a) and S invertible. Then

from a previous homework one has
A Bg-1 et 1
et =8etPSt =g —ta | ST
e

and we have to figure out for what S the above formula is in G for all t € R.

b
d
Comparing the last row in the products yields ce!®, de™® = cx =1, dz~!. If ¢,d # 0 then x = e!® = 7!
but this can only happen when t = 0. We deduce that either ¢ = 0 or d = 0. In both cases a simple
computations yields that Se!®S~! € G always. This means that either

[P RS

so A can be any upper triangular with trace 0 or

=0 )@ -0

and again A can be any upper triangular with trace 0.

Write S = (CCL ) If SetBS~1 € G then Set? = m(x,y)S for some x,y (which depend on t).

If & = 0 then either A = 0 which certainly works or A has Jordan form 1 . If e is a one

parameter subgroup of G then for the invertible matrix S with A = S < 1) S~! one must have that

S L i S~1 € G. But the lower left corner of this matrix is 0 for all values of * if and only if ¢ = 0.

Again we get that A can be any upper triangular matrix with eigenvalues 0,0.
The final answer is A must be upper triangular with trace 0.
O

. Suppose A € My, «»(R), B € GL(n,R) and € R. Recall from a previous homework that exponentials
of matrices are always invertible. Compute
d A

e

Blarm)|z=
dx ) ]GL( )‘ 0

where [, -]qr(n) is the usual group commutator in the group GL(n, R).



10-11

Proof. First note that (e4%)’ = Ae”® simply by looking at the power series.

Now

d
IBAIB€7A1B71 _ AeAzBefoBfl _ EAIBAeiAIBil
i

d
—eA*Be 4B~ _y=A— BAB™!
dx

Let A, B € M, «xn(R) and x € R. For general matrices write [4, B] = AB — BA. Show that

ewAewB _ ew(A+B)+:E2[A,B]/2+higher order terms
[Hint: Write out the first terms of the Taylor series of log(e*#e®?).]

Proof. Note that (log(f)) = ! while (log(f))” = LQ(JH)Z Let f = eA%eB*. Then f(0) = I,,,
f(0)=A+ B and f"(0) = A2f+ 2AB + B2. Thus h = log(f) has Taylor expansion

h(z) = h(0) + ' (0)x + h"(0)2?/2 + O(2*) = (A + B)x + [A, B]2?/2 + O(2®)
and so the result follows. O

Artin 11.1.6 on page 354.

Proof. (a): S is a subring. Indeed, 0 = 0/1, 1 = 1/1 and if 3 1 b,d then 3 { bd in the fraction
a/b+ c/d = (ad + be)/(bd).

(b): S is not a subring. Indeed, sint,cost € S but their product is sintcost = sin(2t)/2. If this
product were in S then sin(2t)/2 can be written as a + Y a, sin(nt) + > b, cos(nt) a finite sum with
integer coefficients. Plugging in /4 and collecting terms we’d get that 1/2 = a + b\/§/2 + ¢ with
a,b,c € Z. But then b =0 and a + ¢ = 1/2 is not an integer. O]

Artin 11.1.7 on page 354.

Proof. (a): This is a ring with 0 =@ and 1 =U. Then A+0=0+A=Aand A-1=1-4 = A.
Clearly A+ B = B + A and AB = BA so we’d only need to check that (A + B)C = AC + BC. But

(A+B)C=(AUB—-ANB)NC=(AUB)NC—-ANBNC=(ANnC)uU(BNnC)-—AnBNC
=(ANnC)u(BNC)-—(ANnC)Nn(BNC)=AC+ BC
(b): Not a ring. Indeed, fog # go f in general so the multiplication law is not commutative. O

(Counts as 2 problems) Artin 7.M.12 on page 228.

Proof. T'll do (c) and (d) as (a) and (b) simply follow from these. I'll do it for p > 2 as SL(2,FF3) =
GL(2,F;) = S3 and you already know everything about S3 anyway.

(a+c): Let’s compute the centralizer of A = <1 _al> . It consists of matrices X such that XA = AX

which, after a computation, is the set of matrices

€T x
Corasp ) =1( 4" o) esL@EN = (0 0 ) Iowe e —amy sy = 1)



This yields an answer to (a).

The equation 22 — axy + y? = 1 always has the solutions (0,41) and these are the only ones with
x =0. If (x,y) is any other solution then we can write y = 2A+ 1 for some A € F,,. Indeed, simply let
A= (y—1)/x. Setting aside the solutions (0,+1) we get the equation

22(1—a\+2\?) = (a — 2\)x
When 1 — aX 4+ A2 # 0 then the only possibility is

a— 2\

S B WY

Each value of A st 1 —a) + A2 # 0 yields one value of = and therefore one value of y. Note that if
A =a/2 € F), then we recover the solution (0,1).

When 1 — aX + \? = 0, which can only happen if a = u + 1/u for some u € Fy and A = u or 1/u, then
the equation becomes 0 = a — 2\ = u + 1/u — 2\ and this can happen (remember that A = u, 1/u)
iff w =+1. When a = u+ 1/u with u # £1 then A = w,1/u yield NO solutions. When u = +1,
a=u+1/u=2u then A = v = 1/u yields a solution for ANY value of = as the equation is satisfied
for any value of x.

To recap:
e if a is not of the form u+ 1/u for some u € )¢ then we get p+ 1 solutions to the equation as each
value of A yields a solution and A = a/2 recovers (0, 1), with (0, —1) never counted by .
e ifa=wu+1/uforu € F —{£1} then each A # u, 1/u yields a solution z and a solution y whereas
A =u or 1/u yield no solutions. Adding in (0, —1) we get a total of p — 2+ 1 = p — 1 solutions.

e if a = u+ 1/u with u = £1 then each A\ # u = 1/u yields one solution  and one solution y but
A = u yields p solutions for z, namely any value of x works. Finally we add (0, —1) for a total of
p—14p+ 1= 2p solutions.

(d): Let e € F) such that —e ¢ {2 | € F)}. Since the map 2 — 2 is a group homomorphism
with kernel +1 it follows that its image has size (p — 1)/2 and so we can choose such an e when

p > 2. I claim that the conjugacy classes of SL(2,F,) have representatives +Is, (1 i), (1 _61)

and {<1 _al> | a € F,} for a total of p 4+ 4 conjugacy classes. The scalar matrices have trivial

conjugacy classes so to check that the other matrices are in different conjugacy classes we look at
their characteristic polynomials as conjugate matrices have the same characteristic polynomials. note
that their characteristic polynomials are (X + 1)2 and X? — aX + 1 which are all distinct unless

_1> has the same

a = £2. When a = 2 for example (the case a = —2 is analogous) then <1 9

. . 1 . . .
characteristic polynomial as ( i) But these two matrices can be conjugate only by a matrix of

u (%
—u —ue —

the form S = ( v) and this is in SL(2,F,) iff the determinant is —u?e = 1. But then —e

would be a perfect square in F)S contradicting its choice.

Recall that the conjugacy class of g has |G/Cg(g)| elements. The scalar matrices have trivial conjugacy
classes. The matrices [ © z where ¢ = +1 have centralizers {+ (1 T)} so the centralizers have size

2p.
Note that the map f(u) =u+1/u:F; — F, sends 1 to 2, —1 to —2 and is two-to-one on F — {£1}.

P
Therefore its image has size 2+ (p—3)/2 = (p+1)/2 with complement of size (p—1)/2. When a ¢ Im f



we get centralizers of size p 4+ 1 from part (c). When a = £+2 we get centralizers of size 2p and when
a € Im f — {£2} we get centralizers of size p — 1. The total cardinality of these p + 4 conjugacy classes
is

3 3 3 3
p’—p p—3 p’—p pP—p p—1 p>—p 4
9 19. . 2. : =p3—p=|SL(2,F
N I T R
+1s —— ——— ——— N—— —
(6 6) a€lm f—{£2} a=%£2 a¢lm f
g

and therefore these p + 4 conjugacy classes exhaust all of SL(2,F,) and the above formula is the class
equation. O



