
Math 30810 Honors Algebra 3

Homework 12

Andrei Jorza

Due at noon on Thursday, December 1

Do 8 of the following questions. Some questions are obligatory. Artin a.b.c means chapter
a, section b, exercise c. You may use any problem to solve any other problem.

1. (You have to do this problem) Artin 11.6.8 (a), (b) on page 356.

Proof. (a): Let i + j = 1 for i ∈ I and j ∈ J . If x ∈ I ∩ J then xi ∈ IJ and xj ∈ IJ and so
xi+ xj = x ∈ IJ . This means I ∩ J ⊂ IJ and the reverse inclusion I did in class.

(b): Define f : R/IJ → R/I × R/J by f(r mod IJ) = (r mod I, r mod J). This is a ring homo-
morphism. If f(r mod IJ) = (0, 0) then r ∈ I and r ∈ J so r ∈ I ∩ J = IJ so r mod IJ = 0 which
means f is injective. If a ∈ R/I and b ∈ R/J denote by a and b as well some representatives of these
cosets in R. Then define x = aj + bi mod IJ with i and j from (a). Since i + j = 1 it follows that
aj + bi ≡ a (mod I) and ≡ b (mod I) and so f is also surjective with f(x) = (a, b).

2. (You have to do this problem) Let R be a ring and I an ideal of R[X]. For a polynomial P (X) ∈ R[X]
let `(P ) be the leading coefficient of P (X). Define J = {`(P ) | P ∈ I}. Show that J is an ideal of R.
(This is very useful.)

Proof. If a, b ∈ J let P,Q ∈ I such that a = `(P ) and b = `(Q). Suppose P has degree m and
Q has degree n. Then XnP (X) + XmQ(X) has degree m + n and has leading term a + b. Since
XnP + XmQ ∈ I it follows that a + b ∈ J . Now if a ∈ I with a = `(P ) and r ∈ R then clearly
ar = `(rP ). As P ∈ I it follows that rP ∈ I and so ar ∈ J .

3. Consider the ring R = Z[
√
−14] = {m + n

√
−14 | m,n ∈ Z}. Let I = (3, 1 +

√
−14). Show that

I2 = (9, 7 +
√
−14) and that I4 = (5 + 2

√
−14) and thus that I4 is a principal ideal. (One can, in

fact, show that the fourth power of any ideal in this ring is principal, but this would be the topic of a
graduate number theory course.)

Proof. Write a =
√
−14. Then I = (3, 1 + a) and so

I2 = (9, 3 + 3a, 2a− 13) = (9, 3 + 3a, a+ 16) = (9, 7 + a, 3 + 3a)

Since 3 + 3a = 3(7 + a)− 2 · 9 it follows that I2 = (9, 7 + a). Next

I4 = (9, 7 + a)2 = (81, 63 + 9a, 35 + 14a)

Note that 2 · 14 − 3 · 9 = 1 so I4 also contains 2(35 + 14a) − 3(63 + 9a) + 2 · 81 = 43 + a. But since
14a+ 35 = 5(43 + a) + 63 + 9a− 3 · 81 it follows that

I4 = (81, 63 + 9a, 43 + a)
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and since 63 + 9a = 9(43 + a) − 4 · 81 we deduce that I4 = (81, 43 + a). We need to show that

I4 = (5 + 2a). We compute
81

5 + 2a
=

81(5− 2a)

81
= 5− 2a and

43 + a

5 + 2a
=

(43 + a)(5− 2a)

81
= 3− a so

we deduce that I4 ⊂ (5 + 2a). But 5 + 2a = 2(43 + a)− 81 and so I4 = (5 + 2a).

4. Artin 11.3.3 on page 354

Proof. (a): The kernel consists of polynomials with no constant coefficients so polynomials in the ideal
(X,Y ).

(b): If P ∈ R[X] and P (2 + i) = 0 then P (2− i) = 0 as well so P (X) is divisible by (X − (2 + i))(X −
(2− i)) = X2 − 4X + 5 which is irreducible. Thus the kernel is (X2 − 4X + 5).

(c): Suppose P ∈ Z[X] has root 1 +
√

2. Note that Q(X) = (X − 1)2 − 2 = X2 − 2X − 1 also has root
1 +
√

2 and that Q is irreducible in Q[X]. Look at the ideal (Q,P ) in Q[X]. This ideal is not Q[X] as
otherwise QA+ PB = 1 for some A,B but the LHS vanishes as 1 +

√
2. Thus (Q,P ) = (D) for some

polynomial D. Since Q is irreducible we deduce that D = Q and so Q | P in Q[X]. From class, since
Q is monic, we can divide with remainder in Z[X] to get P (X) = Q(X)A(B) +R(X) with R of degree
< degQ = 2. But then R(1 +

√
(2)) = 0 and so R cannot be of degree < 2 in Z[X] and so Q | P in

Z[X]. The kernel is therefore (Q).

(d): AgainQ(X) = X4−10X2+1 has
√

2+
√

3 as a root. Its roots are±
√

2±
√

3 soQ has no linear factor
over Q[X]. If Q we reducible over Q[X] it would be a product of quadratics (X2+aX+b)(X2+cX+d).
But then a + c = 0, b + ac + d = 10, bc + ad = 0 and bd = 1. We deduce that c = −a, then from the
third equation either a = 0 or b = d. If a = c = 0 then Q(X) = (X2 + b)(X2 + d) but solving the
quadratic Y 2 + 10Y + 1 = 0 with Y = X2 yields irrational roots −b,−d. If a, c 6= 0 then b = d. Then
b = d = ±1 and 2b− a2 = 10. In all cases we get a irrational. Thus Q(X) is irreducible and as in part
(c) we get (Q(X)) is the kernel.

(e): Clearly y − x2 and z − x3 lie in the kernel. I claim that in fact they generate the kernel. Suppose
P (x, y, z) is a polynomial such that P (x, x2, x3) = 0 as a polynomial. Consider R(z) = P (x, x2, z) ∈
C[x][z]. Since R(x3) = 0 it follows that R(z) = P (x, x2, z) = (z − x3)A(x, z) for some polynomial A.

Now look at Q(y) = P (x, y, z) − P (x, x2, z) ∈ C[x, z][y]. Since Q(x2) = 0 it follows that Q(y) =
P (x, y, z)− P (x, x2, z) = (y − x2)B(x, y, z) for some polynomial B. We deduce that P ∈ (y − x2, z −
x3).

5. Artin 11.3.4 on page 355.

Proof. Clearly y+1−(x−1)3 is in the kernel. Now if Q(y) = P (x, y) is such that P (x, (x−1)3−1) = 0
it follows that Q(y) = (y+1− (x−1)3)A(x, y) and so the kernel is the principal ideal (y+1− (x−1)3).

Now suppose that I is any ideal that contains the kernel. The correspondence theorem says that I is
uniquely determined by I/ ker which is an ideal of C[x, y]/ ker ∼= C[x].

Every ideal of C[x] is principal (from class) and so I/ ker = (a) for some polynomial a. But then
I = ker +(a) is now generated by 2 elements as desired.

6. Artin 11.3.9 on page 355.

Proof. (a): If xn = 0 then (1 + x)(1− x+ x2 − x3 + · · ·+ (−1)n−1xn−1) = 1 + (−1)nxn = 1 so 1 + x is
invertible.

(b): For some large enough n, ap
n

= 0 as a is nilpotent. Then (1 + a)p
n

= 1 + ap
n

= 1. We know from
class that x 7→ xp is a ring homomorphism which is why we could do this computation.

7. Artin 11.3.10 on page 355.
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Proof. From class every ideal is principal of the form (f(t)). Write f(t) = tng(t) where g(0) 6= 0. Then
g is invertible in F [[t]] and so (f(t)) = (tn). Therefore the ideals of F [[t]] are all of the form (tn) for
n ≥ 0 as well as (0).

8. Artin 11.4.4 on page 355.

Proof. Suppose f : Z[x]/(2x2+7)→ Z[x]/(x2+7) is a ring isomorphism. Then 0 = f(0) = f(2x2+7) =
2f(x)2 + 7 and so 2f(x)2 + 7 must be divisible by x2 + 7 in Z[x] which means that the polynomial
2f(x)2 + 7 must vanish as

√
−7. But then f(x) evaluated at

√
−7 is of the form a+ b

√
−7 for rationals

a, b and we’d have 2(a + b
√
−7)2 + 7 = 0. Opening parentheses we see that ab = 0 and in both cases

we get a contradiction. So the rings are not isomorphic.

9. Artin 11.6.7 on page 356.

Proof. If P (X) is divisible by 2 and X in Z[X] then P (X) = XQ(X) and Q(X) must have even
coefficients. Thus 2X | P (X). We conclude that (2) ∩ (X) = (2X). Consider the map φ : Z[X] →
F2[X] × Z defined by φ(P (X)) = (P (X) mod 2, P (0)). This is clearly a ring homomorphism. Its
kernel consists of P (X) such that P (X) is even (so (2)) and P (0) = 0 (so (X)). Thus the kernel is
(2) ∩ (X) = (2X). We deduce that Z[X]/(2X) ∼= Imφ. By construction Imφ is contained in the
desired subring. If Q(X) ∈ F2[X] and n ∈ Z are such that n ≡ Q(0) (mod 2) then pick any lift R(X)
of Q(X) to Z[X] and define P (X) = Q(X)−Q(0) + n. Then φ(R(X)) = (Q(X), n) so Imφ is exactly
the desired subring.

10. Artin 11.M.7 on page 358.

Proof. (a): Following the hint if f1, . . . , fn have no common zero then g =
∑
f2i ∈ I has no zeros and

therefore the function 1/g is continuous and well-defined. This means that g is invertible and so I
must be the unit ideal.

(b): If a ∈ [0, 1] then ma = {f : [0, 1] → R | f(a) = 0} is an ideal of R (from class). I claim that ma

is a maximal ideal. Pick any 0 6= f ∈ R/ma and denote by f any representative in R. By assumption
f /∈ ma. We need to show that f is invertible in R/ma, which then implies that R/ma is a field. By
continuity there exists an open neighborhood of a in [0, 1] in which f doesn’t vanish and, shrinking
this neighborhood, we find a closed neighborhood [c, d] of a on which f is nonzero. Define g ∈ R by

g(x) =


1

f(x) x ∈ [c, d]
1

f(c) x ≤ c
1

f(d) x ≥ d

Clearly g is continuous and well-defined and fg − 1 ∈ ma. Thus f is invertible mod ma.

Now suppose that m is any maximal ideal of R. We need to show that m = ma for some a. Suppose
that the functions in m have no common root. That means that for each a ∈ [0, 1] there exists a
function fa ∈ R such that fa(a) 6= 0. By continuity there exists an open neighborhood Ua of a such
that 0 /∈ fa(Ua). Then [0, 1] is covered by the opens {Ua | a ∈ [0, 1]} and compactness of [0, 1] implies
that finitely many suffice. Let Ua1 ∪ . . . ∪ Uan = [0, 1]. This means that every a ∈ [0, 1] is in some
Uai

and thus fi(a) 6= 0. But this would imply that {fa1
, . . . , fan

} have no common root which would
imply that m is the unit ideal, contradicting the definition of maximality. We conclude that for some
a ∈ [0, 1], every function f ∈ m vanishes as a. Immediately m ⊂ ma and maximality of m implies that
m = ma as an ideal is maximal if it is maximal with respect to inclusion.
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