Math 30810 Honors Algebra 3 Homework 13

Andrei Jorza

Due at noon on Thursday, December 8

Do 7 of the following questions. Some questions are obligatory. Artin a.b.c means chapter a, section b, exercise c. You may use any problem to solve any other problem.

- 1. (You have to do this problem) Let R be a ring and I an ideal of R. Define $J = \{x \in R \mid x^n \in I \text{ for some } n\}$.
 - (a) Show that J is an ideal of R as well.
 - (b) What is J when $R = \mathbb{Z}$ and $I = n\mathbb{Z}$ for a positive integer n?
- 2. Let R be a ring and $N = \{x \in R \mid x^n = 0 \text{ for some } n\}$. The previous problem applied to the 0 ideal shows that N is an ideal of R. Show that N is contained in every prime ideal of R. [Hint: Use the definitions.] (In fact one can show that N equals the intersection of all the prime ideals of R.)
- 3. (You have to do this problem) Let R be a ring.
 - (a) Show that if x is contained in every maximal ideal of R then $1 + xR \subset R^{\times}$. [Hint: Every proper ideal is contained in some maximal ideal.]
 - (b) Show that if $x \in R$ has the property that $1 + xR \subset R^{\times}$ then x is contained in every maximal ideal of R. [Hint: if \mathfrak{m} is a maximal ideal which doesn't contain x look at $\mathfrak{m} + (x)$.]
- 4. Suppose R is a ring and S is an ascending chain of ideals of R, i.e., there exists a totally ordered index set \mathcal{I} such that $\mathcal{S} = \{I_i\}_{i \in \mathcal{I}}$ with $I_i \subset I_j$ whenever i < j in \mathcal{I} . Show that $\bigcup_{i \in \mathcal{I}} I_i$ is an ideal of R.
- 5. Show that $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain. [Hint: Use the complex distance function.]
- 6-7 (Counts as 2 problems) Let $R = \mathbb{Z}[\sqrt{2}] = \{m + n\sqrt{2} \mid m, n \in \mathbb{Z}\}$ with fraction field $F = \mathbb{Q}(\sqrt{2}) = \{x + y\sqrt{2} \mid x, y \in \mathbb{Q}\}.$
 - (a) Show that $d(x + y\sqrt{2}) = |x^2 2y^2|$ is multiplicative on $\mathbb{Q}(\sqrt{2})$ and d(z) = 0 iff z = 0.
 - (b) Suppose $a, b \in \mathbb{Z}[\sqrt{2}]$ and write $z = a/b = u + v\sqrt{2} \in \mathbb{Q}(\sqrt{2})$. Let *m* be the integer closest to *u* and *n* be the integer closest to *v*. Show that if $q = m + n\sqrt{2}$ then a = bq + r for d(r) < d(b) and conclude that $\mathbb{Z}[\sqrt{2}]$ is a Euclidean domain.
- 8-10 (Counts as 3 problems) Consider the ring $R = \mathbb{Z}[\zeta]$ where $\zeta = e^{2\pi i/3}$.
 - (a) Show that if $m^2 + mn + n^2 = 1$ then $m n\zeta \in \mathbb{Z}[\zeta]^{\times}$ and if $m^2 + mn + n^2$ is a prime integer then $m n\zeta$ and $m n\zeta^2$ are irreducible in $\mathbb{Z}[\zeta]$. [Hint: Use $|\cdot|^2$.]
 - (b) Show that $3 = (1 \zeta)(1 \zeta^2)$ and 1ζ and $1 \zeta^2$ are irreducible elements of $\mathbb{Z}[\zeta]$.
 - (c) Let $p \neq 3$ be a prime integer. Show that if $p \equiv 2 \pmod{3}$ then p is irreducible in $\mathbb{Z}[\zeta]$.
 - (d) Show that if $p \equiv 1 \pmod{3}$ is a prime integer then $p \mid x^2 + x + 1$ for some integer x.
 - (e) Deduce that if $p \equiv 1 \pmod{3}$ is a prime integer then $p = m^2 + mn + n^2$ for some integers m and n and therefore that $p = (m n\zeta)(m n\zeta^2)$ with $m n\zeta$ and $m n\zeta^2$ irreducibles in $\mathbb{Z}[\zeta]$.