Math 30810 Honors Algebra 3 Homework 13

Andrei Jorza

Due at noon on Thursday, December 8

Do 7 of the following questions. Some questions are obligatory. Artin a.b.c means chapter a, section b, exercise c. You may use any problem to solve any other problem.

- 1. (You have to do this problem) Let R be a ring and I an ideal of R. Define $J = \{x \in R \mid x^n \in I \text{ for some } n\}$.
 - (a) Show that J is an ideal of R as well.
 - (b) What is J when $R = \mathbb{Z}$ and $I = n\mathbb{Z}$ for a positive integer n?

Proof. (a): Suppose $x^m \in I$ and $y^n \in I$. Have $(x+y)^{m+n} = \sum {\binom{m+n}{k}} x^k y^{m+n-k}$. Since either $k \ge m$ of $m+n-k \ge n$ it follows that $x^k y^{m+n-k} \in I$ so J is closed under addition. If $x^m \in I$ and $r \in R$ then $(rx)^m = r^m x^m \in I$ so J is an ideal.

(b): $J = \{k \in \mathbb{Z} \mid n \mid k^e \text{ for some } e\}$. Looking at prime factorizations this is equivalent to n and k have the same prime factors. Therefore if $n = p_1^{k_1} \cdots p_r^{k_r}$ is the prime factorization of n then $J = p_1 p_2 \cdots p_r \mathbb{Z}$.

2. Let R be a ring and $N = \{x \in R \mid x^n = 0 \text{ for some } n\}$. The previous problem applied to the 0 ideal shows that N is an ideal of R. Show that N is contained in every prime ideal of R. [Hint: Use the definitions.] (In fact one can show that N equals the intersection of all the prime ideals of R.)

Proof. Let \mathfrak{p} be any prime ideal of R and $x \in N$. Since $x^n = 0$ in R it follows that $x^n = 0$ in the domain R/\mathfrak{p} as well. But then x = 0 in R/\mathfrak{p} as R/\mathfrak{p} is a domain. We deduce that $x \in \mathfrak{p}$.

- 3. (You have to do this problem) Let R be a ring.
 - (a) Show that if x is contained in every maximal ideal of R then $1 + xR \subset R^{\times}$. [Hint: Every proper ideal is contained in some maximal ideal.]
 - (b) Show that if $x \in R$ has the property that $1 + xR \subset R^{\times}$ then x is contained in every maximal ideal of R. [Hint: if \mathfrak{m} is a maximal ideal which doesn't contain x look at $\mathfrak{m} + (x)$.]

Proof. (a): Let $y \in R$. We need to show that $1 + xy \in R^{\times}$. If not then from class we know that 1 + xy is in some maximal ideal \mathfrak{m} of R. But $x \in \mathfrak{m}$ by choice so $1 = 1 + xy - x \cdot y \in \mathfrak{m}$ as well which contradicts the fact that maximal ideals are not the unit ideal.

(b): Follow the hint and suppose $x \notin \mathfrak{m}$ for a maximal ideal \mathfrak{m} . Then $\mathfrak{m} \subsetneq \mathfrak{m} + (x) \subset R$ and maximality of \mathfrak{m} and the lemma from class implies that $\mathfrak{m} + (x) = R$. But then x + y = 1 for some $y \in \mathfrak{m}$. But then $y = 1 - x = 1 + x \cdot (-1) \notin R^{\times}$ as otherwise \mathfrak{m} would be the unit ideal. \Box

4. Suppose R is a ring and S is an ascending chain of ideals of R, i.e., there exists a totally ordered index set \mathcal{I} such that $S = \{I_i\}_{i \in \mathcal{I}}$ with $I_i \subset I_j$ whenever i < j in \mathcal{I} . Show that $\bigcup_{i \in \mathcal{I}} I_i$ is an ideal of R.

Proof. Suppose $x, y \in J = \bigcup I_i$. Then $x \in I_i$ and $y \in I_j$ for some indices i, j. We may assume $i \leq j$ as \mathcal{I} is totally ordered and so $x \in I_j$ as well. Then $x + y \in I_j \subset J$ so J is closed under addition. If $x \in J$ and $r \in R$ then $x \in I_i$ for some i and so $rx \in I_i \subset J$ as well. We deduce that J is an ideal. \Box

5. Show that $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain. [Hint: Use the complex distance function.]

Proof. Write $\alpha = \sqrt{-2}$. Define $d(a + b\alpha) = |a + b\alpha|^2 = a^2 + 2b^2$. Then d(z) = 0 iff z = 0 as $z \in \mathbb{C}$ and $d(R - 0) \subset \mathbb{Z}_{>1}$ by construction.

It remains to show that R satisfies division with remainder with respect to d. Look at the complex number a/b and let $q \in \mathbb{Z}[\alpha]$ be the point of the lattice $\mathbb{Z}[\sqrt{-2}]$ which is closest in Euclidean distance to the complex number a/b. Then a/b lies in a $1 \times \sqrt{2}$ rectangle and thus the closest vertex is at a distance at most $\sqrt{3}/2 < 1$. We conclude that |a/b - q| < 1 and defining r = a - bq we deduce that |r/b| = |a/b - q| < 1 and so $d(r) = |r|^2 < |b|^2 = d(b)$ as desired.

- 6-7 (Counts as 2 problems) Let $R = \mathbb{Z}[\sqrt{2}] = \{m + n\sqrt{2} \mid m, n \in \mathbb{Z}\}$ with fraction field $F = \mathbb{Q}(\sqrt{2}) = \{x + y\sqrt{2} \mid x, y \in \mathbb{Q}\}.$
 - (a) Show that $d(x + y\sqrt{2}) = |x^2 2y^2|$ is multiplicative on $\mathbb{Q}(\sqrt{2})$ and d(z) = 0 iff z = 0.
 - (b) Suppose $a, b \in \mathbb{Z}[\sqrt{2}]$ and write $z = a/b = u + v\sqrt{2} \in \mathbb{Q}(\sqrt{2})$. Let *m* be the integer closest to *u* and *n* be the integer closest to *v*. Show that if $q = m + n\sqrt{2}$ then a = bq + r for d(r) < d(b) and conclude that $\mathbb{Z}[\sqrt{2}]$ is a Euclidean domain.

Proof. (a): $d((x + y\sqrt{2})(z + t\sqrt{2})) = d(xy + 2zt + (xt + yz)\sqrt{2}) = |(xy + 2zt)^2 - 2(xt + yz)^2|$ while $d(x + y\sqrt{2})(d(z + t\sqrt{2})) = |(x^2 - 2y^2)(z^2 - 2t^2)|$. Breaking up parantheses immediately yields equality. (b): Let *m* and *n* as in the problem. We need to show that d(r) < d(b) which, by part (a), is equivalent to d(r/b) = d(a/b - q) < 1. But

$$d(a/b-q) = d(u-m+(v-m)\sqrt{2} = |(u-m)^2 - 2(v-n)^2| \le (u-m)^2 + 2(v-n)^2 \le \frac{1}{4} + 2\frac{1}{4} < 1$$

8-10 (Counts as 3 problems) Consider the ring $R = \mathbb{Z}[\zeta]$ where $\zeta = e^{2\pi i/3}$.

- (a) Show that if $m^2 + mn + n^2 = 1$ then $m n\zeta \in \mathbb{Z}[\zeta]^{\times}$ and if $m^2 + mn + n^2$ is a prime integer then $m n\zeta$ and $m n\zeta^2$ are irreducible in $\mathbb{Z}[\zeta]$. [Hint: Use $|\cdot|^2$.]
- (b) Show that $3 = (1 \zeta)(1 \zeta^2)$ and 1ζ and $1 \zeta^2$ are irreducible elements of $\mathbb{Z}[\zeta]$.
- (c) Let $p \neq 3$ be a prime integer. Show that if $p \equiv 2 \pmod{3}$ then p is irreducible in $\mathbb{Z}[\zeta]$.
- (d) Show that if $p \equiv 1 \pmod{3}$ is a prime integer then $p \mid x^2 + x + 1$ for some integer x.
- (e) Deduce that if $p \equiv 1 \pmod{3}$ is a prime integer then $p = m^2 + mn + n^2$ for some integers *m* and *n* and therefore that $p = (m n\zeta)(m n\zeta^2)$ with $m n\zeta$ and $m n\zeta^2$ irreducibles in $\mathbb{Z}[\zeta]$.

Proof. (a): Note that $|m - n\zeta|^2 = (m - n\zeta)(m - n\zeta^2) = m^2 + mn + n^2$. Thus $m^2 + mn + n^2 = 1$ iff $|m - n\zeta| = 1$. As in class if $z \in \mathbb{Z}[\zeta]$ and |z| = 1 then $z\overline{z} = 1$ so z is invertible. The opposite direction also holds: if zy = 1 then $|z|^2|y|^2 = 1$ and $|z|^2$ is a positive integer divisor of 1 so it has to be 1. If $z = m - n\zeta$ has $|z|^2 = m^2 + mn + n^2 = p$ is a prime and z = xy then $|x|^2|y|^2 = |z|^2 = p$ then one of $|x|^2$ and $|y|^2$ is 1 and so x or y is a unit. We deduce that z is irreducible.

(b): We have $|1 - \zeta|^2 = |1 - \zeta^2|^2 = 3$ and the first half of (b) is immediate and part (a) implies the second half of (b). As a remark $1 - \zeta^2 = -\zeta^2(1 - \zeta)$ so $1 - \zeta$ and $1 - \zeta^2$ form the same prime ideal and $3 = -\zeta^2(1 - \zeta)^2$.

(c): If p = xy is a product of non-units in $\mathbb{Z}[\zeta]$ then $|p|^2 = p^2 = |x|^2|y|^2$ with $|x|^2, |y|^2 \neq 1$. We deduce that $|x|^2 = |y|^2 = p$. But if $x = m - n\zeta$ we'd get $m^2 + mn + n^2 = p$ and so $\equiv 0 \pmod{p}$. Note that $m \equiv 0 \pmod{p}$ iff $n \equiv 0 \pmod{p}$ and in both cases we'd get $m^2 + mn + n^2 = p$ would have to be divisible by p^2 which is impossible. So let's suppose $n \not\equiv 0 \pmod{p}$. We'd get that $m^3 - n^3 = (m - n)(m^2 + mn + n^2) \equiv 0 \pmod{p}$ and so $(m/n)^3 \equiv 1 \pmod{p}$. But in \mathbb{F}_p^{\times} , a group of order $p - 1 \equiv 1 \pmod{3}$ the order of m/n must divide both 3 and p - 1 and so it has to be 1, yielding $m \equiv n \pmod{p}$. But then $m^2 + mn + n^2 \equiv 3n^2 \equiv 0 \pmod{p}$ which is impossible as $p \neq 3$ and $p \nmid n$.

Alternatively $m^2 + mn + n^2 = p$ after completing the square becomes $(m + n/2)^2 + 3n^2/4 = p$ and the LHS mod 3 is 0 or 1 while the RHS is 2.

(d): Let g be a generator of \mathbb{F}_p^{\times} , of order p-1 = 3k for some k. Then $x = g^k$ has order 3 and so $x^3 - 1 \equiv 0 \pmod{p}$. So $p \mid x^3 - 1 \equiv (x-1)(x^2 + x + 1)$ and since $x = g^k \not\equiv 1 \pmod{p}$ we get $p \mid x^2 + x + 1$.

(d): Factor p in $\mathbb{Z}[\zeta]$. As in the case of $\mathbb{Z}[i]$, we may write $p = up_1 \cdots p_r q_1 \overline{q}_1 \cdots q_s \overline{q}_s$ where u is a unit, p_1, \ldots, p_r are primes of $\mathbb{Z}[\zeta]$ which happen to be in \mathbb{Z} and q_i are primes of $\mathbb{Z}[\zeta]$ which are not real numbers. Then

$$|p|^2 = p^2 = \prod p_i^2 \prod |q_j|^4$$

so either r = 1, s = 0 and p is a prime in $\mathbb{Z}[\zeta]$ or r = 0, s = 1 and $p = q\overline{q}$ where q is a prime of $\mathbb{Z}[\zeta]$. If not the latter then p would have to be prime in $\mathbb{Z}[\zeta]$.

But part (d) gives $p \mid x^2 + x + 1 = (x - \zeta)(x - \zeta^2)$ and if p were prime in $\mathbb{Z}[\zeta]$ then $p \mid x - \zeta$ or $p \mid x - \zeta^2$. Then either $x - \zeta$ or $x - \zeta^2$ would be of the form $p(a + b\zeta) = pa + pb\zeta$ which cannot be as $p \nmid 1$. \Box