
Math 30810 Honors Algebra 3

Homework 13

Andrei Jorza

Due at noon on Thursday, December 8

Do 7 of the following questions. Some questions are obligatory. Artin a.b.c means chapter
a, section b, exercise c. You may use any problem to solve any other problem.

1. (You have to do this problem) Let R be a ring and I an ideal of R. Define J = {x ∈ R | xn ∈
I for some n}.

(a) Show that J is an ideal of R as well.

(b) What is J when R = Z and I = nZ for a positive integer n?

Proof. (a): Suppose xm ∈ I and yn ∈ I. Have (x+ y)m+n =
∑(

m+n
k

)
xkym+n−k. Since either k ≥ m

of m + n − k ≥ n it follows that xkym+n−k ∈ I so J is closed under addition. If xm ∈ I and r ∈ R
then (rx)m = rmxm ∈ I so J is an ideal.

(b): J = {k ∈ Z | n | ke for some e}. Looking at prime factorizations this is equivalent to n and
k have the same prime factors. Therefore if n = pk11 · · · pkrr is the prime factorization of n then
J = p1p2 · · · prZ.

2. Let R be a ring and N = {x ∈ R | xn = 0 for some n}. The previous problem applied to the 0 ideal
shows that N is an ideal of R. Show that N is contained in every prime ideal of R. [Hint: Use the
definitions.] (In fact one can show that N equals the intersection of all the prime ideals of R.)

Proof. Let p be any prime ideal of R and x ∈ N . Since xn = 0 in R it follows that xn = 0 in the
domain R/p as well. But then x = 0 in R/p as R/p is a domain. We deduce that x ∈ p.

3. (You have to do this problem) Let R be a ring.

(a) Show that if x is contained in every maximal ideal of R then 1 + xR ⊂ R×. [Hint: Every proper
ideal is contained in some maximal ideal.]

(b) Show that if x ∈ R has the property that 1 + xR ⊂ R× then x is contained in every maximal
ideal of R. [Hint: if m is a maximal ideal which doesn’t contain x look at m + (x).]

Proof. (a): Let y ∈ R. We need to show that 1 + xy ∈ R×. If not then from class we know that
1 + xy is in some maximal ideal m of R. But x ∈ m by choice so 1 = 1 + xy − x · y ∈ m as well which
contradicts the fact that maximal ideals are not the unit ideal.

(b): Follow the hint and suppose x /∈ m for a maximal ideal m. Then m ( m+(x) ⊂ R and maximality
of m and the lemma from class implies that m + (x) = R. But then x + y = 1 for some y ∈ m. But
then y = 1− x = 1 + x · (−1) /∈ R× as otherwise m would be the unit ideal.

4. Suppose R is a ring and S is an ascending chain of ideals of R, i.e., there exists a totally ordered index
set I such that S = {Ii}i∈I with Ii ⊂ Ij whenever i < j in I. Show that

⋃
i∈I Ii is an ideal of R.
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Proof. Suppose x, y ∈ J =
⋃
Ii. Then x ∈ Ii and y ∈ Ij for some indices i, j. We may assume i ≤ j as

I is totally ordered and so x ∈ Ij as well. Then x+ y ∈ Ij ⊂ J so J is closed under addition. If x ∈ J
and r ∈ R then x ∈ Ii for some i and so rx ∈ Ii ⊂ J as well. We deduce that J is an ideal.

5. Show that Z[
√
−2] is a Euclidean domain. [Hint: Use the complex distance function.]

Proof. Write α =
√
−2. Define d(a+ bα) = |a+ bα|2 = a2 + 2b2. Then d(z) = 0 iff z = 0 as z ∈ C and

d(R− 0) ⊂ Z≥1 by construction.

It remains to show that R satisfies division with remainder with respect to d. Look at the complex
number a/b and let q ∈ Z[α] be the point of the lattice Z[

√
−2] which is closest in Euclidean distance

to the complex number a/b. Then a/b lies in a 1 ×
√

2 rectangle and thus the closest vertex is at a
distance at most

√
3/2 < 1. We conclude that |a/b − q| < 1 and defining r = a − bq we deduce that

|r/b| = |a/b− q| < 1 and so d(r) = |r|2 < |b|2 = d(b) as desired.

6-7 (Counts as 2 problems) Let R = Z[
√

2] = {m + n
√

2 | m,n ∈ Z} with fraction field F = Q(
√

2) =
{x+ y

√
2 | x, y ∈ Q}.

(a) Show that d(x+ y
√

2) = |x2 − 2y2| is multiplicative on Q(
√

2) and d(z) = 0 iff z = 0.

(b) Suppose a, b ∈ Z[
√

2] and write z = a/b = u + v
√

2 ∈ Q(
√

2). Let m be the integer closest to u
and n be the integer closest to v. Show that if q = m+ n

√
2 then a = bq + r for d(r) < d(b) and

conclude that Z[
√

2] is a Euclidean domain.

Proof. (a): d((x + y
√

2)(z + t
√

2)) = d(xy + 2zt + (xt + yz)
√

2) = |(xy + 2zt)2 − 2(xt + yz)2| while
d(x+ y

√
2)(d(z + t

√
2) = |(x2 − 2y2)(z2 − 2t2)|. Breaking up parantheses immediately yields equality.

(b): Let m and n as in the problem. We need to show that d(r) < d(b) which, by part (a), is equivalent
to d(r/b) = d(a/b− q) < 1. But

d(a/b− q) = d(u−m+ (v −m)
√

2 = |(u−m)2 − 2(v − n)2| ≤ (u−m)2 + 2(v − n)2 ≤ 1

4
+ 2

1

4
< 1

8-10 (Counts as 3 problems) Consider the ring R = Z[ζ] where ζ = e2πi/3.

(a) Show that if m2 +mn+n2 = 1 then m−nζ ∈ Z[ζ]× and if m2 +mn+n2 is a prime integer then
m− nζ and m− nζ2 are irreducible in Z[ζ]. [Hint: Use | · |2.]

(b) Show that 3 = (1− ζ)(1− ζ2) and 1− ζ and 1− ζ2 are irreducible elements of Z[ζ].

(c) Let p 6= 3 be a prime integer. Show that if p ≡ 2 (mod 3) then p is irreducible in Z[ζ].

(d) Show that if p ≡ 1 (mod 3) is a prime integer then p | x2 + x+ 1 for some integer x.

(e) Deduce that if p ≡ 1 (mod 3) is a prime integer then p = m2 +mn+ n2 for some integers m and
n and therefore that p = (m− nζ)(m− nζ2) with m− nζ and m− nζ2 irreducibles in Z[ζ].

Proof. (a): Note that |m − nζ|2 = (m − nζ)(m − nζ2) = m2 + mn + n2. Thus m2 + mn + n2 = 1 iff
|m− nζ| = 1. As in class if z ∈ Z[ζ] and |z| = 1 then zz = 1 so z is invertible. The opposite direction
also holds: if zy = 1 then |z|2|y|2 = 1 and |z|2 is a positive integer divisor of 1 so it has to be 1. If
z = m − nζ has |z|2 = m2 + mn + n2 = p is a prime and z = xy then |x|2|y|2 = |z|2 = p then one of
|x|2 and |y|2 is 1 and so x or y is a unit. We deduce that z is irreducible.

(b): We have |1 − ζ|2 = |1 − ζ2|2 = 3 and the first half of (b) is immediate and part (a) implies the
second half of (b). As a remark 1 − ζ2 = −ζ2(1 − ζ) so 1 − ζ and 1 − ζ2 form the same prime ideal
and 3 = −ζ2(1− ζ)2.
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(c): If p = xy is a product of non-units in Z[ζ] then |p|2 = p2 = |x|2|y|2 with |x|2, |y|2 6= 1. We
deduce that |x|2 = |y|2 = p. But if x = m − nζ we’d get m2 + mn + n2 = p and so ≡ 0 (mod p).
Note that m ≡ 0 (mod p) iff n ≡ 0 (mod p) and in both cases we’d get m2 + mn + n2 = p would
have to be divisible by p2 which is impossible. So let’s suppose n 6≡ 0 (mod p). We’d get that
m3 − n3 = (m− n)(m2 + mn + n2) ≡ 0 (mod p) and so (m/n)3 ≡ 1 (mod p). But in F×p , a group of
order p− 1 ≡ 1 (mod 3) the order of m/n must divide both 3 and p− 1 and so it has to be 1, yielding
m ≡ n (mod p). But then m2 +mn+ n2 ≡ 3n2 ≡ 0 (mod p) which is impossible as p 6= 3 and p - n.

Alternatively m2 +mn+ n2 = p after completing the square becomes (m+ n/2)2 + 3n2/4 = p and
the LHS mod 3 is 0 or 1 while the RHS is 2.

(d): Let g be a generator of F×p , of order p − 1 = 3k for some k. Then x = gk has order 3 and so

x3 − 1 ≡ 0 (mod p). So p | x3 − 1 = (x − 1)(x2 + x + 1) and since x = gk 6≡ 1 (mod p) we get
p | x2 + x+ 1.

(d): Factor p in Z[ζ]. As in the case of Z[i], we may write p = up1 · · · prq1q1 · · · qsqs where u is a unit,
p1, . . . , pr are primes of Z[ζ] which happen to be in Z and qi are primes of Z[ζ] which are not real
numbers. Then

|p|2 = p2 =
∏

p2i
∏
|qj |4

so either r = 1, s = 0 and p is a prime in Z[ζ] or r = 0, s = 1 and p = qq where q is a prime of Z[ζ]. If
not the latter then p would have to be prime in Z[ζ].

But part (d) gives p | x2 +x+1 = (x−ζ)(x−ζ2) and if p were prime in Z[ζ] then p | x−ζ or p | x−ζ2.
Then either x− ζ or x− ζ2 would be of the form p(a+ bζ) = pa+ pbζ which cannot be as p - 1.
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