
Math 43900 Problem Solving

Fall 2016

Lecture 11 Functions and functional equations

Andrei Jorza

These problems are taken from the textbook, from Engels’ Problem solving
strategies, from Ravi Vakil’s Putnam seminar notes and from Po-Shen Loh’s
Putnam seminar notes.

1 Functions and functional equations

You’ve seen in physics and calculus differential equations where you were sup-
posed to determine a particular function f(x) satisfying a particular equation
involing differentials. These are special examples of “functional equations”,
i.e., problems where you were supposed to determine a particular function
f(x) given only an equation satisfied by f(x). They are a popular topic in
math contests and solving them requires ingenuity and playfulness.

Example 1 (Cauchy’s functional equation). The most classical example of
a simple (nondifferential) functional equation is to determine functions f :
R→ R such that

f(x+ y) = f(x) + f(y)

for all x, y ∈ R.

As it stands the example has countless solutions (qnd I mean it in a tech-
nical way, there are uncountably many solutions). However, assuming mild
properties of f(x) one can show that f(x) = ax for a fixed a ∈ R are the only
solutions. This is the case when f(x) is assumed to be continuous, or even
integrable.

Remark 1. A large number of functional equations can be reduced to Cauchy’s
functional equation via alegbraic manipulations.
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I identified 3 main topics:

1. Functional equations with integers, where you use the fact that the inte-
gers are discrete.

2. Functional equations over R where you use algebraic manipulations.

3. Functional equations over R where you use analytic properties of f(x),
such that continuity or differentiability or integrability.

2 Problems

2.1 Functional equations and the integers

Easier

1. Suppose f : Z≥0 → Z≥0 satisfies f(f(n)) = n+ 3 for all n ≥ 0 integer.

(a) Show that f(n+ 3) = f(n) + 3.

(b) Deduce that f(3k) = 3k+f(0), f(3k+1) = 3k+f(1) and f(3k+2) =
3k + f(2) for all nonnegative integers k.

2. Suppose f : Q>0 → Q>0 satisfies f(xf(y)) = f(x)
y for all x, y ∈ Q>0.

(a) Show that f(f(y)) = f(1)/y, that f(f(1)) = 1 and deduce that
f(1) = 1.

(b) Deduce that f(f(y)) = 1/y and show that f(1/y) = 1/f(y). [Hint:
Apply f to the first equation.]

3. Suppose f : Z≥1 → Z≥1 satisfies f(n+ 1) > f(f(n)) for all n ≥ 1.

(a) Show that f(1) is the minimum value of f .

(b) Show that f(1) < f(2) < f(3) < . . ..

Harder

4. (Continuation of Exercise 1)

(c) Show that f(f(n)) ≡ n (mod 3) and conclude that either f(x) ≡ x
(mod 3) for at least one of x ∈ {0, 1, 2}.
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(d) Deduce that no such function f(n) exists. [Hint: Use the previous
part.]

5. (Continuation of Exercise 2)

(c) Show that f(x/y) = f(x)/f(y). [Hint: You know that f(f(y)) =
1/y.]

(d) Deduce that f(xy) = f(x)f(y) for all x, y.

(e) Can you find ONE example of such f .

6. (Continuation of Exercise 3)

(c) Show that f(n) > n can never happen.

(d) Deduce that f(n) = n for all n.

2.2 Functional equations and algebraic manipulations

Easier

7. Suppose f : R → R satisfies f(0) = 1/2 and there is some real α for
which

f(x+ y) = f(x)f(α− y) + f(y)f(α− x)

for all x, y ∈ R.

(a) Show that f(α) = 1/2.

(b) Show that f(α− x) = f(x) for all x.

8. Suppose f : R→ R satisfies xf(y)+yf(x) = (x+y)f(x)f(y). Show that
for every x ∈ R we have f(x) ∈ {0, 1}. Can you show that f is an even
function? [Hint: Play around with special values of x and y.]

9. Suppose f : R → R satisfies f(x)f(y) = f(x − y) for all x, y and also
suppose that f is not the 0 function. Show that f(0) = 1 and that for
every x ∈ R, f(x) ∈ {−1, 1}. [Hint: Play around with special values of
x and y.]
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Harder

10. (Continuation of Exercise 7)

(c) Show that f(x) = ±1/2 for all x.

(d) Show that in fact f(x) = 1/2 for all x.

11. Determine all functions f : [0,∞)→ [0,∞) satisfying the following prop-
erties: (a) f(2) = 0, (b) if x ∈ [0, 2) then f(x) 6= 0 and (c) if x, y ∈ [0,∞)
then f(x+ y) = f(xf(y))f(y).

12. Find the polynomials P (X) such that P (X + 1) = P (X) + 2X + 1.

2.3 Functional equations and calculus

Easier

13. For each of the following functional equations find f(x) continuous that
satisfy the equation:

(a) f(x+ y) = f(x)f(y) with f : R→ (0,∞). [Hint: Use log.]

(b) f(x+ y) = f(x) + f(y) + f(x)f(y). [Hint: Reduce case (a).]

(c) f(xy) = f(x) + f(y) for f : (0,∞)→ R.

(d) f(xy) = xf(y) + yf(x) for f : (0,∞)→ R. [Hint: Divide by xy.]

Harder

14. Determine the continuous functions f : R → R such that f(x + y) =
f(x)f(y). [Hint: Can you reduce to Exercise 13 (a)?]

15. Find the continuous functions f : R→ R satisfying the functional equa-
tion

f

(
x+ y

2

)
=
f(x) + f(y)

2

[Hint: Compute f(x/2) in terms of f(x) and find a different functional
equation satisfied by f .]

16. Determine the continuous functions f : R→ R 6=0 such that for all x, y

f(x+ y) =
f(x)f(y)

f(x) + f(y)
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