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In previous lectures we concentrated on different problem solving topics and techniques, as well as writing
up clearly and concisely your solutions. We’ve also looked into how to choose a problem to work on and
when, if at all, to give up. Today we’ll concentrate on brainstorming, by which I mean how to poke around
effectively when stuck while keeping a clear eye.

1 Problems

1. Given a positive integer n, what is the largest k such that the numbers 1, 2, . . . , n can be put into
k boxes such that the sum of the numbers in each box is the same? E.g., when n = 8 the example
(1, 2, 3, 6), (4, 8), (5, 7) shows that the largest k is at least 3.

2. Is there an infinite sequence of real numbers a1, a2, . . . such that for every positive integer m one has

am1 + am2 + · · · = m?

3. You are given ε > 0 and two integers h and k. Show that you can find two integers m and n such that

ε < |h
√
m− k

√
n| < 2ε

4. Let S be a class of functions from [0,∞) to [0,∞) that satisfies:

(a) The functions f1(x) = ex − 1 and f2(x) = ln(x + 1) are in S;

(b) If f(x), g(x) are in S then so are the function f(x) + g(x) and f(g(x));

(c) If f(x), g(x) are in S and f(x) ≥ g(x) for all x ≥ 0 then the function f(x)− g(x) is in S. Prove
that if f(x), g(x) are in S then so is the function f(x)g(x).

5. Let A be the n× n matrix whose entry on row i and column j is 1/min(i, j). Compute detA.

6. Find the volume of the region of points (x, y, z) such that

(x2 + y2 + z2 + 8)2 ≤ 36(x2 + y2)
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