Math 43900 Problem solving, Fall 2016, Lecture 4 exercises.
These problems are taken from the textbook, from Ravi Vakil’s Putnam seminar notes and from Po-Shen
Loh’s Putnam seminar notes.

Polynomials

Useful facts

1.

If P(X) has root o then X — | P(X), i.e., P(X) = (X — a)Q(X) for a polynomial Q(X). The root
« is a double root, i.e., it appears twice in the list of roots, if and only if P(«) = P'(a) = 0.

. If a polynomial with coefficients in C has infinitely many roots it must be the 0 polynomial. A variant

is that if P, @ are complex polynomials with P(z) = Q(z) for infinitely many values of z then P = Q.

If P(X) and Q(X) have the same (complex) roots then they differ by a scalar. In particular, if they
have the same leading coefficient then P = Q.

Remember from the quadratic formula that if X2 + aX + b = 0 has roots o and 3 then o + 8 = —a
and af =b. If P(X) = X" +a; X" '+ a;X" 2+ .-+ a, 1X + a, has roots ay,...,q, then for
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which specializes to —a; = Zai(: $1), a2 = Y2, (= s2), —az = 33, diajag(= s3) and so

i
on until (—1)"a,, = [[ ai(= sp). The s; are called the elementary symmetric polynomials in the
roots.

If A and B are two polynomials then you can divide with remainder: A(X) = B(X) - Q(X) + R(X)
with either R(X) = 0 or deg R < deg B. Using divisibilities you can show that the ged of A and B is
the same as the ged of B and R and then compute the ged sequentially. We write (A, B) for the ged.

This is Gauss’ lemma: If A and B are integer polynomials and A/B is a polynomial (necessarily with
rational coefficients) then it is an integer polynomial. In other words if B | A as rational polynomials
then B | A as integral polynomials.

If a matrix has entries which are polynomials then the determinant of the matrix is also a polynomial.
You can show this by induction using the fact that a determinant can be expanded in terms of rows
and minors.

This is the important Eisenstein irreducibility criterion, which we’ll prove when we do modular arith-
metic. Suppose P(X) = X" +a; X" ' +---+a,_1X + a, is an integral polynomial and p is a prime
number such that p | a1, as,...,a, but p?{a,. Then P(X) is an irreducible polynomial.

Finally an input from Galois theory that’s useful: If a rational (or real or complex) polynomial
P(xq1,x9,...,x,) doesn’t depend on the ordering of the variables z1,...,z,, i.e., no matter how you
permute them the final expression is the same, then P(z1,...,z,) can be written as a polynomial ratio-
nal (or real or complex) polynomial Q(s1,. .., s,) where s are the elementary symmetric polynomials.
E.g., 23x9 + 2123 + 2313 + 1123 + 2373 + 1203 = 5152 — 383 (check this!).

Problems with roots

1.

Show that every real polynomial with odd degree has a real root. Show that every real polynomial can
be factored as a product of linear and quadratic factors.
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Show that there exists no polynomial P(X) such that P(n) = 2" for all n € Z.
Find a polynomial with integer coefficients that has the zero v/2 + v/3.
Find the polynomial with roots a,b,c such that a +b+c=3, a2+ b+ =5and a® + b3+ =9.

Suppose P(X) is a monic polynomial with integer coefficients. Show that if P(X) has a rational root
a then « is in fact integral. [Roots of such polynomials are called algebraic integers.]

Let P(X) = X" +au X"+ +a, 1 X +a, Ifa +as+as+--- and ay + ag + --- are real
numbers show that P(1) and P(—1) are real numbers as well. As a follow-up: let aq,...,a, be the
roots of P(X) and suppose that Q(X) = X" + b, X" +--.b,_1 X + b, has roots a?,...,a2. Show
that by + by + - -+ + b, is a real numbers.

Show Vandermonde’s identity:
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[Hint: Both sides are polynomials in ;. Show that they have the same roots and then compare the
leading coefficient.

If P(X) is a real polynomial whose roots are all real and distinct and different from 0 show that
XP'(X)+ P(X) is a real polynomial with distinct real roots which are different from 0. As a follow-
up: show that X P”(X) + 3XP/(X) + P(X) has distinct real roots. [Hint for the follow-up: apply the
first part twice.]

Problems with divisibilities

1.

(Useful) Show that if m | n then X™ —1 | X™ —1. Also show that if m | n are odd then X™+1 | X" +1.
As a follow-up: show that if m and n are positive integers with ged d then the polynomials X" — 1
and X" — 1 have gcd X? — 1. [Hint: Show that if m = nq + r is division with remainder then
X™—1=(X"-1)Q(X)+ X" — 1 is division with remainder.]

Show that in the product (1 — X + X? — X3 + ... + X100)(1 + X + X? + X3 + ... + X199 when you
expand and collect terms X only appears to even exponents.

Show that the polynomial X3 — 2 is irreducible in Z[X].

Find all polynomials P(X) satisfying (X + 1)P(X) = (X —2)P(X +1).

For the integer sequence a,, from Putnam 2015 defined by ag = 1, a; = 2 and recurrently by a,11 =

4a, — an—1, show that if m | n are odd then an is a polynomial expression in /3 with integer
a

coefficients. [Hint: You already showed that a, =27 (24 v3)" + (2 — V3)").]

P _
is an irreducible

X
Suppose p is a prime. Show that P(X) = XP~ '+ XP 2 4 ... + X +1 = ~ 1

polynomial. [Hint: Look at P(X + 1) and apply the Eisenstein irreducibility criterion.]

(This is fun) Associate to a prime the polynomial whose coefficients are the decimal digits of the prime
(for example, for the prime 7043 the polynomial is P(X) = 7X? +4X +3). Prove that this polynomial
is always irreducible over Z[X]. [Hint: Argue by contradiction.]

Show that (X —1)(X —2)--- (X —n) — 1 is irreducible. [Hint: Show that if it factors as P(X)Q(X)
then P + @ has roots 1,2,...,n.]



