Math 43900 Problem solving, Fall 2016, Lecture 4 exercises.

These problems are taken from the textbook, from Ravi Vakil's Putnam seminar notes and from Po-Shen Loh's Putnam seminar notes.

Polynomials

Useful facts

- 1. If P(X) has root α then $X \alpha \mid P(X)$, i.e., $P(X) = (X \alpha)Q(X)$ for a polynomial Q(X). The root α is a double root, i.e., it appears twice in the list of roots, if and only if $P(\alpha) = P'(\alpha) = 0$.
- 2. If a polynomial with coefficients in \mathbb{C} has infinitely many roots it must be the 0 polynomial. A variant is that if P,Q are complex polynomials with P(z) = Q(z) for infinitely many values of z then P = Q.
- 3. If P(X) and Q(X) have the same (complex) roots then they differ by a scalar. In particular, if they have the same leading coefficient then P = Q.
- 4. Remember from the quadratic formula that if $X^2 + aX + b = 0$ has roots α and β then $\alpha + \beta = -a$ and $\alpha\beta = b$. If $P(X) = X^n + a_1X^{n-1} + a_2X^{n-2} + \cdots + a_{n-1}X + a_n$ has roots $\alpha_1, \ldots, \alpha_n$ then for $1 \le r \le n$

$$(-1)^r a_r = \sum_{i_1 < i_2 < \dots < i_r} \alpha_{i_1} \alpha_{i_2} \cdots \alpha_{i_r} (= s_r)$$

which specializes to $-a_1 = \sum_i \alpha_i (=s_1)$, $a_2 = \sum_{i < j} \alpha_i \alpha_j (=s_2)$, $-a_3 = \sum_{i < j < k} \alpha_i \alpha_j \alpha_k (=s_3)$ and so on until $(-1)^n a_n = \prod \alpha_i (=s_n)$. The s_k are called the **elementary symmetric polynomials** in the roots.

- 5. If A and B are two polynomials then you can divide with remainder: $A(X) = B(X) \cdot Q(X) + R(X)$ with either R(X) = 0 or $\deg R < \deg B$. Using divisibilities you can show that the gcd of A and B is the same as the gcd of B and R and then compute the gcd sequentially. We write (A, B) for the gcd.
- 6. This is Gauss' lemma: If A and B are integer polynomials and A/B is a polynomial (necessarily with rational coefficients) then it is an integer polynomial. In other words if $B \mid A$ as rational polynomials then $B \mid A$ as integral polynomials.
- 7. If a matrix has entries which are polynomials then the determinant of the matrix is also a polynomial. You can show this by induction using the fact that a determinant can be expanded in terms of rows and minors.
- 8. This is the important Eisenstein irreducibility criterion, which we'll prove when we do modular arithmetic. Suppose $P(X) = X^n + a_1 X^{n-1} + \cdots + a_{n-1} X + a_n$ is an integral polynomial and p is a prime number such that $p \mid a_1, a_2, \ldots, a_n$ but $p^2 \nmid a_n$. Then P(X) is an irreducible polynomial.
- 9. Finally an input from Galois theory that's useful: If a rational (or real or complex) polynomial $P(x_1, x_2, \ldots, x_n)$ doesn't depend on the ordering of the variables x_1, \ldots, x_n , i.e., no matter how you permute them the final expression is the same, then $P(x_1, \ldots, x_n)$ can be written as a polynomial rational (or real or complex) polynomial $Q(s_1, \ldots, s_n)$ where s_k are the elementary symmetric polynomials. E.g., $x_1^2x_2 + x_1x_2^2 + x_1^2x_3 + x_1x_3^2 + x_2^2x_3 + x_2x_3^2 = s_1s_2 3s_3$ (check this!).

Problems with roots

1. Show that every real polynomial with odd degree has a real root. Show that every real polynomial can be factored as a product of linear and quadratic factors.

- 2. Show that there exists no polynomial P(X) such that $P(n) = 2^n$ for all $n \in \mathbb{Z}$.
- 3. Find a polynomial with integer coefficients that has the zero $\sqrt{2} + \sqrt{3}$.
- 4. Find the polynomial with roots a, b, c such that a + b + c = 3, $a^2 + b^2 + c^2 = 5$ and $a^3 + b^3 + c^3 = 9$.
- 5. Suppose P(X) is a monic polynomial with integer coefficients. Show that if P(X) has a rational root α then α is in fact integral. [Roots of such polynomials are called algebraic integers.]
- 6. Let $P(X) = X^n + a_1 X^{n-1} + \cdots + a_{n-1} X + a_n$. If $a_1 + a_3 + a_5 + \cdots$ and $a_2 + a_4 + \cdots$ are real numbers show that P(1) and P(-1) are real numbers as well. As a follow-up: let $\alpha_1, \ldots, \alpha_n$ be the roots of P(X) and suppose that $Q(X) = X^n + b_1 X^{n-1} + \cdots + b_{n-1} X + b_n$ has roots $\alpha_1^2, \ldots, \alpha_n^2$. Show that $b_1 + b_2 + \cdots + b_n$ is a real numbers.
- 7. Show Vandermonde's identity:

$$\begin{vmatrix} 1 & 1 & \dots & 1 \\ x_1 & x_2 & \dots & x_n \\ \vdots & & & & \\ x_1^{n-1} & x_2^{n-1} & \dots & x_n^{n-1} \end{vmatrix} = \prod_{i < j} (x_i - x_j)$$

[Hint: Both sides are polynomials in x_1 . Show that they have the same roots and then compare the leading coefficient.]

8. If P(X) is a real polynomial whose roots are all real and distinct and different from 0 show that XP'(X) + P(X) is a real polynomial with distinct real roots which are different from 0. As a follow-up: show that XP''(X) + 3XP'(X) + P(X) has distinct real roots. [Hint for the follow-up: apply the first part twice.]

Problems with divisibilities

- 1. (Useful) Show that if $m \mid n$ then $X^m 1 \mid X^n 1$. Also show that if $m \mid n$ are odd then $X^m + 1 \mid X^n + 1$. As a follow-up: show that if m and n are positive integers with gcd d then the polynomials $X^m 1$ and $X^n 1$ have gcd $X^d 1$. [Hint: Show that if m = nq + r is division with remainder then $X^m 1 = (X^n 1)Q(X) + X^r 1$ is division with remainder.]
- 2. Show that in the product $(1 X + X^2 X^3 + \dots + X^{100})(1 + X + X^2 + X^3 + \dots + X^{100})$ when you expand and collect terms X only appears to even exponents.
- 3. Show that the polynomial $X^3 2$ is irreducible in $\mathbb{Z}[X]$.
- 4. Find all polynomials P(X) satisfying (X+1)P(X)=(X-2)P(X+1).
- 5. For the integer sequence a_n from Putnam 2015 defined by $a_0 = 1$, $a_1 = 2$ and recurrently by $a_{n+1} = 4a_n a_{n-1}$, show that if $m \mid n$ are odd then $\frac{a_n}{a_m}$ is a polynomial expression in $\sqrt{3}$ with integer coefficients. [Hint: You already showed that $a_n = 2^{-1} \left((2 + \sqrt{3})^n + (2 \sqrt{3})^n \right)$.]
- 6. Suppose p is a prime. Show that $P(X) = X^{p-1} + X^{p-2} + \cdots + X + 1 = \frac{X^p 1}{X 1}$ is an irreducible polynomial. [Hint: Look at P(X + 1) and apply the Eisenstein irreducibility criterion.]
- 7. (This is fun) Associate to a prime the polynomial whose coefficients are the decimal digits of the prime (for example, for the prime 7043 the polynomial is $P(X) = 7X^3 + 4X + 3$). Prove that this polynomial is always irreducible over $\mathbb{Z}[X]$. [Hint: Argue by contradiction.]
- 8. Show that $(X-1)(X-2)\cdots(X-n)-1$ is irreducible. [Hint: Show that if it factors as P(X)Q(X) then P+Q has roots $1,2,\ldots,n$.]