Math 43900 Problem solving, Fall 2016, Lecture 4 exercises.
These problems are taken from the textbook, from Ravi Vakil's Putnam seminar notes and from Po-Shen Loh's Putnam seminar notes.

Polynomials

Useful facts

1. If $P(X)$ has root α then $X-\alpha \mid P(X)$, i.e., $P(X)=(X-\alpha) Q(X)$ for a polynomial $Q(X)$. The root α is a double root, i.e., it appears twice in the list of roots, if and only if $P(\alpha)=P^{\prime}(\alpha)=0$.
2. If a polynomial with coefficients in \mathbb{C} has infinitely many roots it must be the 0 polynomial. A variant is that if P, Q are complex polynomials with $P(z)=Q(z)$ for infinitely many values of z then $P=Q$.
3. If $P(X)$ and $Q(X)$ have the same (complex) roots then they differ by a scalar. In particular, if they have the same leading coefficient then $P=Q$.
4. Remember from the quadratic formula that if $X^{2}+a X+b=0$ has roots α and β then $\alpha+\beta=-a$ and $\alpha \beta=b$. If $P(X)=X^{n}+a_{1} X^{n-1}+a_{2} X^{n-2}+\cdots+a_{n-1} X+a_{n}$ has roots $\alpha_{1}, \ldots, \alpha_{n}$ then for $1 \leq r \leq n$

$$
(-1)^{r} a_{r}=\sum_{i_{1}<i_{2}<\ldots<i_{r}} \alpha_{i_{1}} \alpha_{i_{2}} \cdots \alpha_{i_{r}}\left(=s_{r}\right)
$$

which specializes to $-a_{1}=\sum_{i} \alpha_{i}\left(=s_{1}\right), a_{2}=\sum_{i<j} \alpha_{i} \alpha_{j}\left(=s_{2}\right),-a_{3}=\sum_{i<j<k} \alpha_{i} \alpha_{j} \alpha_{k}\left(=s_{3}\right)$ and so on until $(-1)^{n} a_{n}=\prod \alpha_{i}\left(=s_{n}\right)$. The s_{k} are called the elementary symmetric polynomials in the roots.
5. If A and B are two polynomials then you can divide with remainder: $A(X)=B(X) \cdot Q(X)+R(X)$ with either $R(X)=0$ or $\operatorname{deg} R<\operatorname{deg} B$. Using divisibilities you can show that the gcd of A and B is the same as the gcd of B and R and then compute the gcd sequentially. We write (A, B) for the gcd.
6. This is Gauss' lemma: If A and B are integer polynomials and A / B is a polynomial (necessarily with rational coefficients) then it is an integer polynomial. In other words if $B \mid A$ as rational polynomials then $B \mid A$ as integral polynomials.
7. If a matrix has entries which are polynomials then the determinant of the matrix is also a polynomial. You can show this by induction using the fact that a determinant can be expanded in terms of rows and minors.
8. This is the important Eisenstein irreducibility criterion, which we'll prove when we do modular arithmetic. Suppose $P(X)=X^{n}+a_{1} X^{n-1}+\cdots+a_{n-1} X+a_{n}$ is an integral polynomial and p is a prime number such that $p \mid a_{1}, a_{2}, \ldots, a_{n}$ but $p^{2} \nmid a_{n}$. Then $P(X)$ is an irreducible polynomial.
9. Finally an input from Galois theory that's useful: If a rational (or real or complex) polynomial $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ doesn't depend on the ordering of the variables x_{1}, \ldots, x_{n}, i.e., no matter how you permute them the final expression is the same, then $P\left(x_{1}, \ldots, x_{n}\right)$ can be written as a polynomial rational (or real or complex) polynomial $Q\left(s_{1}, \ldots, s_{n}\right)$ where s_{k} are the elementary symmetric polynomials. E.g., $x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}=s_{1} s_{2}-3 s_{3}$ (check this!).

Problems with roots

1. Show that every real polynomial with odd degree has a real root. Show that every real polynomial can be factored as a product of linear and quadratic factors.
2. Show that there exists no polynomial $P(X)$ such that $P(n)=2^{n}$ for all $n \in \mathbb{Z}$.
3. Find a polynomial with integer coefficients that has the zero $\sqrt{2}+\sqrt{3}$.
4. Find the polynomial with roots a, b, c such that $a+b+c=3, a^{2}+b^{2}+c^{2}=5$ and $a^{3}+b^{3}+c^{3}=9$.
5. Suppose $P(X)$ is a monic polynomial with integer coefficients. Show that if $P(X)$ has a rational root α then α is in fact integral. [Roots of such polynomials are called algebraic integers.]
6. Let $P(X)=X^{n}+a_{1} X^{n-1}+\cdots+a_{n-1} X+a_{n}$. If $a_{1}+a_{3}+a_{5}+\cdots$ and $a_{2}+a_{4}+\cdots$ are real numbers show that $P(1)$ and $P(-1)$ are real numbers as well. As a follow-up: let $\alpha_{1}, \ldots, \alpha_{n}$ be the roots of $P(X)$ and suppose that $Q(X)=X^{n}+b_{1} X^{n-1}+\cdots b_{n-1} X+b_{n}$ has roots $\alpha_{1}^{2}, \ldots, \alpha_{n}^{2}$. Show that $b_{1}+b_{2}+\cdots+b_{n}$ is a real numbers.
7. Show Vandermonde's identity:

$$
\left|\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
x_{1} & x_{2} & \ldots & x_{n} \\
\vdots & & & \\
x_{1}^{n-1} & x_{2}^{n-1} & \ldots & x_{n}^{n-1}
\end{array}\right|=\prod_{i<j}\left(x_{i}-x_{j}\right)
$$

[Hint: Both sides are polynomials in x_{1}. Show that they have the same roots and then compare the leading coefficient.]
8. If $P(X)$ is a real polynomial whose roots are all real and distinct and different from 0 show that $X P^{\prime}(X)+P(X)$ is a real polynomial with distinct real roots which are different from 0 . As a followup: show that $X P^{\prime \prime}(X)+3 X P^{\prime}(X)+P(X)$ has distinct real roots. [Hint for the follow-up: apply the first part twice.]

Problems with divisibilities

1. (Useful) Show that if $m \mid n$ then $X^{m}-1 \mid X^{n}-1$. Also show that if $m \mid n$ are odd then $X^{m}+1 \mid X^{n}+1$. As a follow-up: show that if m and n are positive integers with ged d then the polynomials $X^{m}-1$ and $X^{n}-1$ have gcd $X^{d}-1$. [Hint: Show that if $m=n q+r$ is division with remainder then $X^{m}-1=\left(X^{n}-1\right) Q(X)+X^{r}-1$ is division with remainder.]
2. Show that in the product $\left(1-X+X^{2}-X^{3}+\cdots+X^{100}\right)\left(1+X+X^{2}+X^{3}+\cdots+X^{100}\right)$ when you expand and collect terms X only appears to even exponents.
3. Show that the polynomial $X^{3}-2$ is irreducible in $\mathbb{Z}[X]$.
4. Find all polynomials $P(X)$ satisfying $(X+1) P(X)=(X-2) P(X+1)$.
5. For the integer sequence a_{n} from Putnam 2015 defined by $a_{0}=1, a_{1}=2$ and recurrently by $a_{n+1}=$ $4 a_{n}-a_{n-1}$, show that if $m \mid n$ are odd then $\frac{a_{n}}{a_{m}}$ is a polynomial expression in $\sqrt{3}$ with integer coefficients. [Hint: You already showed that $a_{n}=2^{-1}\left((2+\sqrt{3})^{n}+(2-\sqrt{3})^{n}\right)$.]
6. Suppose p is a prime. Show that $P(X)=X^{p-1}+X^{p-2}+\cdots+X+1=\frac{X^{p}-1}{X-1}$ is an irreducible polynomial. [Hint: Look at $P(X+1)$ and apply the Eisenstein irreducibility criterion.]
7. (This is fun) Associate to a prime the polynomial whose coefficients are the decimal digits of the prime (for example, for the prime 7043 the polynomial is $P(X)=7 X^{3}+4 X+3$). Prove that this polynomial is always irreducible over $\mathbb{Z}[X]$. [Hint: Argue by contradiction.]
8. Show that $(X-1)(X-2) \cdots(X-n)-1$ is irreducible. [Hint: Show that if it factors as $P(X) Q(X)$ then $P+Q$ has roots $1,2, \ldots, n$.]
