
Math 43900 Problem solving, Fall 2016, Lecture 4 exercises.
These problems are taken from the textbook, from Ravi Vakil’s Putnam seminar notes and from Po-Shen

Loh’s Putnam seminar notes.

Polynomials

Useful facts

1. If P (X) has root α then X − α | P (X), i.e., P (X) = (X − α)Q(X) for a polynomial Q(X). The root
α is a double root, i.e., it appears twice in the list of roots, if and only if P (α) = P ′(α) = 0.

2. If a polynomial with coefficients in C has infinitely many roots it must be the 0 polynomial. A variant
is that if P,Q are complex polynomials with P (z) = Q(z) for infinitely many values of z then P = Q.

3. If P (X) and Q(X) have the same (complex) roots then they differ by a scalar. In particular, if they
have the same leading coefficient then P = Q.

4. Remember from the quadratic formula that if X2 + aX + b = 0 has roots α and β then α + β = −a
and αβ = b. If P (X) = Xn + a1X

n−1 + a2X
n−2 + · · · + an−1X + an has roots α1, . . . , αn then for

1 ≤ r ≤ n
(−1)rar =

∑
i1<i2<...<ir

αi1αi2 · · ·αir (= sr)

which specializes to −a1 =
∑
i

αi(= s1), a2 =
∑

i<j αiαj(= s2), −a3 =
∑

i<j<k αiαjαk(= s3) and so

on until (−1)nan =
∏
αi(= sn). The sk are called the elementary symmetric polynomials in the

roots.

5. If A and B are two polynomials then you can divide with remainder: A(X) = B(X) · Q(X) + R(X)
with either R(X) = 0 or degR < degB. Using divisibilities you can show that the gcd of A and B is
the same as the gcd of B and R and then compute the gcd sequentially. We write (A,B) for the gcd.

6. This is Gauss’ lemma: If A and B are integer polynomials and A/B is a polynomial (necessarily with
rational coefficients) then it is an integer polynomial. In other words if B | A as rational polynomials
then B | A as integral polynomials.

7. If a matrix has entries which are polynomials then the determinant of the matrix is also a polynomial.
You can show this by induction using the fact that a determinant can be expanded in terms of rows
and minors.

8. This is the important Eisenstein irreducibility criterion, which we’ll prove when we do modular arith-
metic. Suppose P (X) = Xn + a1X

n−1 + · · ·+ an−1X + an is an integral polynomial and p is a prime
number such that p | a1, a2, . . . , an but p2 - an. Then P (X) is an irreducible polynomial.

9. Finally an input from Galois theory that’s useful: If a rational (or real or complex) polynomial
P (x1, x2, . . . , xn) doesn’t depend on the ordering of the variables x1, . . . , xn, i.e., no matter how you
permute them the final expression is the same, then P (x1, . . . , xn) can be written as a polynomial ratio-
nal (or real or complex) polynomial Q(s1, . . . , sn) where sk are the elementary symmetric polynomials.
E.g., x21x2 + x1x

2
2 + x21x3 + x1x

2
3 + x22x3 + x2x

2
3 = s1s2 − 3s3 (check this!).

Problems with roots

1. Show that every real polynomial with odd degree has a real root. Show that every real polynomial can
be factored as a product of linear and quadratic factors.
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Proof. By induction you reduce to polynomials with no real roots. If P (a+ bi) = 0 then P (a− bi) = 0
so P (X) is divisible by (X−(a+bi))(X−(a−bi)) = X2−2aX+a2 +b2 and proceed by induction.

2. Show that there exists no polynomial P (X) such that P (n) = 2n for all n ∈ Z.

Proof. Look at limit as x→∞ of P (x)/2x = 0.

3. Find a polynomial with integer coefficients that has the zero
√

2 +
√

3.

Proof. Variant of AG 149

4. Find the polynomial with roots a, b, c such that a+ b+ c = 3, a2 + b2 + c2 = 5 and a3 + b3 + c3 = 9.

Proof. P (X) = X3 − uX2 + vX − w with u = a+ b+ c = 3, v = ab+ bc+ ca = ((a+ b+ c)2 − (a2 +
b2 + c2))/2 = 2 and w = abc = ((a+ b+ c)3 − 3(a+ b+ c)(a2 + b2 + c2) + 2(a3 + b3 + c3))/6 = 0.

5. Suppose P (X) is a monic polynomial with integer coefficients. Show that if P (X) has a rational root
α then α is in fact integral. [Roots of such polynomials are called algebraic integers.]

Proof. If m/n is a root with m and n coprime then n must divide the leading coefficient 1 of P (X)
and so m/n is an integer.

6. Let P (X) = Xn + a1X
n−1 + · · · + an−1X + an. If a1 + a3 + a5 + · · · and a2 + a4 + · · · are real

numbers show that P (1) and P (−1) are real numbers as well. As a follow-up: let α1, . . . , αn be the
roots of P (X) and suppose that Q(X) = Xn + b1X

n−1 + · · · bn−1X + bn has roots α2
1, . . . , α

2
n. Show

that b1 + b2 + · · ·+ bn is a real numbers.

Proof. AG 152

7. Show Vandermonde’s identity:∣∣∣∣∣∣∣∣∣
1 1 . . . 1
x1 x2 . . . xn
...

xn−11 xn−12 . . . xn−1n

∣∣∣∣∣∣∣∣∣ =
∏
i<j

(xi − xj)

[Hint: Both sides are polynomials in x1. Show that they have the same roots and then compare the
leading coefficient.]

Proof. Google it. I did it in class

8. If P (X) is a real polynomial whose roots are all real and distinct and different from 0 show that
XP ′(X) + P (X) is a real polynomial with distinct real roots which are different from 0. As a follow-
up: show that XP ′′(X) + 3XP ′(X) + P (X) has distinct real roots. [Hint for the follow-up: apply the
first part twice.]

Proof. AG 169
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Problems with divisibilities

1. (Useful) Show that if m | n then Xm−1 | Xn−1. Also show that if m | n are odd then Xm+1 | Xn+1.
As a follow-up: show that if m and n are positive integers with gcd d then the polynomials Xm − 1
and Xn − 1 have gcd Xd − 1. [Hint: Show that if m = nq + r is division with remainder then
Xm − 1 = (Xn − 1)Q(X) +Xr − 1 is division with remainder.]

Proof. Did this in class

2. Show that in the product (1−X +X2 −X3 + · · ·+X100)(1 +X +X2 +X3 + · · ·+X100) when you
expand and collect terms X only appears to even exponents.

Proof. Use the previous problem to find formulas for each parenthesis. The product is 1 +X2 +X4 +
. . .+X200.

3. Show that the polynomial X3 − 2 is irreducible in Z[X].

Proof. If not it has an integer root, which is clearly does not have. Or the Eisenstein criterion.

4. Find all polynomials P (X) satisfying (X + 1)P (X) = (X − 2)P (X + 1).

Proof. Variant of AG 146

5. For the integer sequence an from Putnam 2015 defined by a0 = 1, a1 = 2 and recurrently by an+1 =

4an − an−1, show that if m | n are odd then
an
am

is a polynomial expression in
√

3 with integer

coefficients. [Hint: You already showed that an = 2−1
(
(2 +

√
3)n + (2−

√
3)n
)
.]

Proof. Use the first problem of this section. I did this in class

6. Suppose p is a prime. Show that P (X) = Xp−1 + Xp−2 + · · · + X + 1 =
Xp − 1

X − 1
is an irreducible

polynomial. [Hint: Look at P (X + 1) and apply the Eisenstein irreducibility criterion.]

Proof. AG 183

7. (This is fun) Associate to a prime the polynomial whose coefficients are the decimal digits of the prime
(for example, for the prime 7043 the polynomial is P (X) = 7X3 +4X+3). Prove that this polynomial
is always irreducible over Z[X]. [Hint: Argue by contradiction.]

Proof. AG 187

8. Show that (X − 1)(X − 2) · · · (X − n) − 1 is irreducible. [Hint: Show that if it factors as P (X)Q(X)
then P +Q has roots 1, 2, . . . , n.]

Proof. P (k)Q(k) = −1 so either P (k) = 1, Q(k) = −1 or P (k) = −1, Q(k) = 1. Thus (P +Q)(k) = 0.
If P and Q are nontrivial, their sum is either 0 or has degree < n, whereas P + Q has n roots. Thus
P = −Q so the only possibility is that the polynomial is −P (X)2. But the polynomial evaluated at
n+ 1 is n!− 1 > 0 whereas −P (n+ 1)2 ≤ 0. See AG 185
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