
Math 43900 Problem Solving

Fall 2016

Lecture 7 Combinatorics

Andrei Jorza

These problems are taken from the textbook, from Engels’ Problem solving strategies, from Ravi Vakil’s
Putnam seminar notes and from Po-Shen Loh’s Putnam seminar notes.

1 Combinatorics

Overview

Combinatorics is a rather vast and not particularly well defined subject in problem solving. Roughly speaking
it deals with configurations, countings, combinatorial coefficients but also probabilities, graphs and games.
When I say configurations I mean it in the most general setting, from sets to integers and from complex
numbers to geometry.

While the subject is vast, there are some general patterns and approaches that, while not algorithmic,
still can provide you with a starting point, at least to play around.

Basic countings

Here I collect some basing counting results:

1. If you have a set with n elements, there are n! way to permute the elements. (E.g., abc, bca, cab, bac,
cba and acb.)

2. If you have a set with n elements and wish to choose a subset of k elements, there’s

(
n

k

)
=

n!

k!(n− k)!
ways to do this.

3. A set with n elements has exactly 2n subsets, including the empty set. (E.g., abc has ∅, a, b, c, ab, ac,
bc and abc.)

Basic types of questions

1. Is some particular type of configuration possible? Can you show a particular property of a configura-
tion?
Useful: the pigeonhole principle, induction as well as invariants/semi-invariants.

2. Count a particular number of configurations
Useful: reduce to known counts, or perhaps simpler counts.

3. Show some properties of combinatorial numbers.
Useful: lots of strategies, including counts, the binomial formula from calculus, reducing to recursions,
generating functions.
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A very useful tool is the notion of a graph: a graph is a collection of vertices and possibly oriented edges
connected some vertices to others.

2 Problems

2.1 Configurations

Remember that you’ve worked on many such problems before, with induction, the pigeonhole principle and
invariants.

Easier

1. Show that you can cover a 9× 5 board with triminos.

2. Let A and B be two sets. Find all sets X such that A∩X = B ∩X = A∩B and A∪B ∪X = A∪B.

3. Suppose you have a graph (see above) with oriented edges. Show that you can find two vertices that
are endpoints of he same number of (oriented) edges. [Hint: use the pigeonhole principle.]

4. For two sets A and B define A∆B := (A − B) ∪ (B − A). Fix a set A and consider the function
f(X) := X∆A of a variable X which represents a set. Show that f ◦ f = id and conclude that f is
injective.

Harder

5. An extension of Exercise 1: Show that you can cover an m× n board with triminos if and only if
3 | mn and, if one of the dimensions is = 3 then the other is even. [Hint: use divisibility, some playing
around, and induction.]

6. In a cube of length 9 you have 2016 points. Show that you can find two points among them at most 1
apart. [Hint: pigeonhole.]

2.2 Counting configurations

Easier

7. In the coordinate plane draw the integer grid, with vertical and horizontal lines at integer intercepts.
A path in the plane is said to be good if (a) it only goes along the integer grid lines and (b) if it only

goes up or to the right. Show that the number of good paths from (0, 0) to (m,n) is exactly

(
m+ n

m

)
.

8. You draw n great circles on a sphere. (A great circle on a sphere is one whose center is the same as
the center of the sphere.) No three of these n circles intersect in one point. In how many regions do
the n circle divide the surface of the sphere? [Hint: play around with small n and use induction to
find a formula for the number of regions for n+ 1 in terms of the number of regions for n.]

9. A subset S of {1, 2, . . . , n} is said to be connected if the following condition holds: if a ∈ S then either
a+ 1 or a− 1 is also in S.

(a) Find the number of connected subsets when n = 7.

(b) Harder: Find the number of connected subsets in general.
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Harder

10. Recall the notion of a good path from Exercise 7. A good path is called super good if it never goes
above the diagonal line y = x.

(a) Show that the number of good paths from (0, 0) to (n, n) that aren’t super is the same as the
number of good paths from (−1, 1) to (n, n). [Hint: Can you come up with a procedure that
transforms a non super good path into a super good path from (−1, 1) to (n, n)?]

(b) How many super good paths are there?

11. Let c(n) be the number of ways to partition an n + 2-gon into triangles using only diagonals. E.g.,
c(1) = 1, c(2) = 2. Show that

c(n) = c(0)c(n− 1) + c(1)c(n− 2) + · · ·+ c(n− 1)c(0)

and compute c(3), c(4), c(5).

2.3 Combinatorial coefficients

The most useful formula for binomial coefficients is the binomial expansion formula:

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k

In calculus you also learn that this works with Taylor series. If
(
x
n

)
= x(x−1)(x−2)···(x−(n−1))

n! then

(x+ 1)α =
∑
n≥0

(
α

n

)
xn

Easier

12. Show that

(
n

k

)
=

(
n

n− k

)
.

13. Show that

(
n

k

)
+

(
n

k + 1

)
=

(
n+ 1

k + 1

)
.

14. Compute the Taylor expansion of
√

1− 4x around x = 0. (This is useful to compute the Catalan
numbers.)

15. Show that

n∑
k=0

(
n

k

)
= 2n. Also show that

n∑
k=0

k

(
n

k

)
= n2n−1. [Hint: Work with the binomial

expansion.]

16. Show that

(
n

k

)
=
n

k

(
n− 1

k − 1

)
. Deduce that if k and n are coprime then k |

(
n− 1

k − 1

)
.

Harder

17. Show that

n∑
k=0

(
n

k

)2

=

(
2n

n

)
. [Hint: the RHS is the coefficient of xn in (x+ 1)2n = (x+ 1)n(x+ 1)n.]
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18. A marginally harder variant of the previous problem, with basically the same hint: show that

k∑
j=0

(
m

j

)(
n

k − j

)
=

(
m+ n

k

)

19. Show that
∑

0≤k≤n/n
(
n−k
k

)
= Fn, the Fibonacci number where F0 = F1 = 1 and Fn+2 = Fn+1 + Fn.
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