Math 43900 Problem Solving Fall 2016 Lecture 8 Matrices

Andrei Jorza

These problems are taken from the textbook, from Engels' *Problem solving strategies*, from Ravi Vakil's Putnam seminar notes and from Po-Shen Loh's Putnam seminar notes.

1 Matrices

Overview

The way matrices show up in problem solving problems involves the following three main themes:

- 1. algebraic manipulations of matrices (they can be multiplied and the operation is not commutative),
- 2. determinants and eigenvalues of matrices,
- 3. matrices as defining linear maps on vector spaces.

Basic results

- 1. You can always add two $m \times n$ matrices.
- 2. You can always multiply an $m \times n$ matrix and an $n \times p$ matrix to get an $m \times p$ matrix.
- 3. The **trace** of a matrix $\operatorname{Tr} A$ is the sum of its diagonal terms. It has the property that $\operatorname{Tr}(A+B)=\operatorname{Tr}(A)+\operatorname{Tr}(B)$ and $\operatorname{Tr}(AB)=\operatorname{Tr}(BA)$ for all matrices A and B.
- 4. The **determinant** of a matrix $\det A$ is a polynomial expression in the entries of the matrix A and satisfies the following properties:
 - (a) If in a matrix $A = (a_{ij})$ you write $A_{p,q}$ for the $(n-1) \times (n-1)$ where you eliminate the p-th row and q-th column from A then

$$\det(A) = a_{11} \det A_{11} - a_{12} \det A_{12} + \dots + (-1)^{n-1} a_{1,n} \det A_{1,n}$$

- (b) det(AB) = det(A) det(B) for all matrices A and B.
- (c) If you swap two rows or columns of a matrix A to obtain a matrix B then det(B) = -det(A).
- (d) If in a matrix A you add a multiple of one row to a different row to get a matrix B then det(B) = det(A). The same is true if you add a multiple of a column to a different column.
- 5. Suppose A is an $n \times n$ matrix. If you can find a **nonzero** vector (i.e., an $n \times 1$ matrix consisting of a single column) and a scalar α such that $Av = \alpha v$ then α is said to be an eigenvalue of A with eigenvector v.

6. If A is an $n \times n$ matrix the characteristic polynomial of A is the monic degree n polynomial

$$P_A(X) = \det(XI_n - A)$$

- (a) A scalar α is an eigenvalue of A if and only if it is a root of $P_A(X)$. The roots of $P_A(X)$ are **the** eigenvalues of A and are counted with multiplicity if they are not distinct. E.g., I_n has n eigenvalues all equal to 1.
- (b) $P_A(X) = X^n (\operatorname{Tr} A)X^{n-1} + \dots + (-1)^n \det(A)$.
- (c) Since we know the relation between the coefficients of a polynomial and its roots we deduce that if $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A then

$$\operatorname{Tr}(A) = \lambda_1 + \lambda_2 + \dots + \lambda_n$$

 $\det(A) = \lambda_1 \lambda_2 \dots \lambda_n$

- (d) If you plug in A into the polynomial $P_A(X)$ you always get the 0 matrix: $P_A(A) = O$.
- (e) If A and B are matrices then $P_{AB}(X) = P_{BA}(X)$ as polynomials.
- 7. A big result in linear algebra says that for any matrix A you can find an invertible matrix S such that the conjugate SAS^{-1} has a very special shape: the **Jordan canonical form**. In fact the Jordan canonical form SAS^{-1} has the n eigenvalues on the diagonal but much more is true: SAS^{-1} is block diagonal and each block is of the form

$$\begin{pmatrix} \lambda & 1 & 0 & \dots \\ 0 & \lambda & 1 & \dots \\ & & \ddots & \ddots \\ 0 & \dots & 0 & \lambda \end{pmatrix}$$

with an eigenvalue λ on the diagonal and 1-s off diagonal. E.g., for a 2×2 matrix the possible Jordan canonical forms are

$$\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \text{ for } \lambda_1 \neq \lambda_2 \text{ and } \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \text{ or } \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$$

2 Problems

2.1 Determinants, traces, characteristic polynomials and eigenvalues

Easier

- 1. Show that you can never find two $n \times n$ matrices A and B with real coefficients such that $AB BA = I_n$. [Hint: What is the trace?]
- 2. Consider an $n \times (n+1)$ matrix $A = (a_{ij})$. For a column k write A_k for the $n \times n$ matrix you obtain from A by removing the k-th column. Show that

$$a_{11} \det A_1 - a_{12} \det A_2 + \dots + (-1)^{n+1} a_{1,n+1} \det A_{n+1} = 0$$

[Hint: Can you see this expression as the determinant of an $(n+1) \times (n+1)$ matrix?

- 3. Suppose P(X) is a polynomial and A is an $n \times n$ matrix such that P(A) = 0. Show that the eigenvalues of A are among the roots of P(X). [Hint: What are the eigenvalues of P(A) = 0? Use Exercise 6.]
- 4. This is an application of Exercise 15. Suppose X is an antisymmetric matrix, i.e., of the form $X = -X^t$. (Think $\begin{pmatrix} x \\ -x \end{pmatrix}$.) Show that every eigenvalue of X is of the form ai where $i = \sqrt{-1}$ and $a \in \mathbb{R}$. [Hint: If $Xv = \alpha v$ compute $\langle X^t v, v \rangle = \langle v, Xv \rangle$ in two ways.]
- 5. Show that $A^k = 0$ for some $k \ge 0$ if and only if all the eigenvalues of A are 0 in which case $A^n = 0$ as well.

Harder

- 6. (VERY USEFUL) Suppose A is an $n \times n$ matrix and Q(X) is any polynomial. If the eigenvalues of A are $\lambda_1, \ldots, \lambda_n$ then the eigenvalues of Q(A) (also an $n \times n$ matrix) are $Q(\lambda_1), \ldots, Q(\lambda_n)$.
- 7. Suppose A is an $n \times n$ real matrix such that $A^2 = A + I_n$. Show that $\det(A) < 2^n$. In fact show that $\det(A) \le \left(\frac{1+\sqrt{5}}{2}\right)^n$.
- 8. Suppose X is a real matrix with $X + X^t = I_n$. Show that det $X \ge \frac{1}{2^n}$.
- 9. Compute the determinant of the matrix (a_{ij}) where $a_{ii} = 2$ and if $i \neq j$ then $a_{ij} = (-1)^{i-j}$. [Hint: Use row operations to simplify the matrix.]
- 10. Suppose A is an $n \times n$ matrix whose square A^2 is either 0 or I_n . Show that $\det(A + I_n) \ge \det(A + I_n)$.

2.2 Algebraic operations and linear algebra

Easier

11. Suppose (x_n) is a sequence defined by the linear recurrence $x_{n+2} = ax_{n+1} + bx_n$ for all $n \ge 0$. Show that

$$\begin{pmatrix} x_{n+2} \\ x_{n+1} \end{pmatrix} = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_{n+1} \\ x_n \end{pmatrix}$$

and conclude that for $n \ge 1$, x_n is the first entry of the matrix $\begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}^{n-1} \begin{pmatrix} x_1 \\ x_0 \end{pmatrix}$.

- 12. Compute $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}^n$ and $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}^n$ for all n.
- 13. Suppose $f(x) = a_0 + a_1x + a_2x^2 + \cdots$ is a converging power series. Show that $f(SAS^{-1}) = Sf(A)S^{-1}$.
- 14. A useful application of Exercise 12. Show that if $f(x) = a_0 + a_1 x + a_2 x^2 + \cdots$ is an absolutely convergent power series then $f\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = \begin{pmatrix} f(\lambda_1) & 0 \\ 0 & f(\lambda_2) \end{pmatrix}$ and $f\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} f(\lambda) & f'(\lambda) \\ 0 & f(\lambda) \end{pmatrix}$.
- 15. If u and v are $n \times 1$ column matrices write $\langle u, v \rangle = u^t v$ for the dot product of the two vectors. If A is an $n \times n$ matrix show that $\langle u, Av \rangle = \langle A^t u, v \rangle$. Show that $\langle v, \overline{v} \rangle \geq 0$, where \overline{v} is the complex conjugate of v.
- 16. If $A = (a_{ij})$ show that $Tr(A \cdot A^t) = \sum_{i,j} a_{ij}^2$.

Harder

- 17. Show that there exists no complex matrix A such that $\sin(A) = \begin{pmatrix} 1 & 2016 \\ 0 & 1 \end{pmatrix}$. (This is a Putnam problem.) [Hint: Use the Exercise 14.]
- 18. Suppose A and B are 2×2 complex matrices such that AB = BA. Show that you can find two complex numbers a and b such that B = aA + b. [Hint: Conjugate A to a Jordan canonical form, then things are much easier.] More generally, if A and B are $n \times n$ matrices such that AB = BA show that B = P(A) where P is a degree at most n 1 polynomial.
- 19. Consider v_1, \ldots, v_n vectors in \mathbb{R}^n and the matrix A whose entry on row i and column j is the dot product $v_i \cdot v_j$. Let B be the matrix whose columns are the vectors v_1, \ldots, v_n . Show that $\det A = (\det B)^2$. [Hint: Show that $A = BB^t$.]

- 20. An application of the previous problem. Suppose A_1, A_2, \ldots, A_n are subsets of some set $\{x_1, x_2, \ldots, x_n\}$. Show that if M is the $n \times n$ matrix whose entry on row i and column j is the cardinality $|A_i \cap A_j|$ then $\det M \geq 0$. [Hint: Apply the previous problem to v_i whose entry in position j is 1 if x_j is in A_i and 0 otherwise.] A cool application: Suppose you choose a_1, \ldots, a_n divisors of an integer n. Show that $\det(\gcd(a_i, a_j)) \geq 0$.
- 21. Suppose A and B are two $n \times n$ matrices that don't commute and you can find nonzero real numbers p,q,r such that $pAB+qBA=I_n$ and $A^2=rB^2$. Show that p=q.
- 22. Suppose A and B are $n \times n$ real matrices such that $\text{Tr}(A \cdot A^t + B \cdot B^t) = \text{Tr}(A \cdot B + A^t \cdot B^t)$. Show that $A = B^t$. [Hint: Use Exercise 16 and then complete squares.]