Math 20550, Final Exam
December 18, 2015

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 2 hours.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 12 pages of the test.
- Each question is 7 points.
- You get 3 free points.

Good Luck!

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(a)</td>
<td>(b)</td>
<td>(●)</td>
<td>(d)</td>
<td>(e)</td>
</tr>
<tr>
<td>2.</td>
<td>(a)</td>
<td>(●)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
</tr>
<tr>
<td>3.</td>
<td>(a)</td>
<td>(b)</td>
<td>(●)</td>
<td>(d)</td>
<td>(e)</td>
</tr>
<tr>
<td>4.</td>
<td>(●)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
</tr>
<tr>
<td>5.</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(●)</td>
</tr>
<tr>
<td>6.</td>
<td>(●)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
</tr>
<tr>
<td>7.</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(●)</td>
</tr>
<tr>
<td>8.</td>
<td>(a)</td>
<td>(b)</td>
<td>(●)</td>
<td>(d)</td>
<td>(e)</td>
</tr>
<tr>
<td>9.</td>
<td>(●)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
</tr>
<tr>
<td>10.</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(●)</td>
<td>(e)</td>
</tr>
<tr>
<td>11.</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(●)</td>
<td>(e)</td>
</tr>
<tr>
<td>12.</td>
<td>(●)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
</tr>
<tr>
<td>13.</td>
<td>(a)</td>
<td>(●)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
</tr>
<tr>
<td>14.</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(●)</td>
<td>(e)</td>
</tr>
<tr>
<td>15.</td>
<td>(a)</td>
<td>(b)</td>
<td>(●)</td>
<td>(d)</td>
<td>(e)</td>
</tr>
<tr>
<td>16.</td>
<td>(a)</td>
<td>(b)</td>
<td>(●)</td>
<td>(d)</td>
<td>(e)</td>
</tr>
<tr>
<td>17.</td>
<td>(●)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
</tr>
<tr>
<td>18.</td>
<td>(a)</td>
<td>(b)</td>
<td>(●)</td>
<td>(d)</td>
<td>(e)</td>
</tr>
<tr>
<td>19.</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(●)</td>
</tr>
<tr>
<td>20.</td>
<td>(●)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
</tr>
<tr>
<td>21.</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(●)</td>
<td>(e)</td>
</tr>
</tbody>
</table>
Math 20550, Final Exam
December 18, 2015

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 2 hours.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 12 pages of the test.
- Each question is 7 points.
- You get 3 free points.

Good Luck!

1. (a) (b) (c) (d) (e)
2. (a) (b) (c) (d) (e)
3. (a) (b) (c) (d) (e)
4. (a) (b) (c) (d) (e)
5. (a) (b) (c) (d) (e)
6. (a) (b) (c) (d) (e)
7. (a) (b) (c) (d) (e)
8. (a) (b) (c) (d) (e)
9. (a) (b) (c) (d) (e)
10. (a) (b) (c) (d) (e)
11. (a) (b) (c) (d) (e)
12. (a) (b) (c) (d) (e)
13. (a) (b) (c) (d) (e)
14. (a) (b) (c) (d) (e)
15. (a) (b) (c) (d) (e)
16. (a) (b) (c) (d) (e)
17. (a) (b) (c) (d) (e)
18. (a) (b) (c) (d) (e)
19. (a) (b) (c) (d) (e)
20. (a) (b) (c) (d) (e)
21. (a) (b) (c) (d) (e)

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!
Multiple Choice

1. (7 pts.) At what point does the surface parametrized by $\mathbf{r}(u, v) = (2u, u^2 + v^2, v + 1)$ have a tangent plane parallel to the plane $4x - 2y + 8z = 0$?

(a) (0, 0, 0) (b) (2, 2, 2) (c) (4, 8, 3) (d) (4, -2, 8) (e) (0, 0, 1)

2. (7 pts.) Compute $\int_{0}^{\sqrt{\pi/2}} \int_{y}^{\sqrt{\pi/2}} \cos(x^2) \, dx \, dy$. (Hint: change the order of integration.)

(a) -1 (b) 1/2 (c) $-\sqrt{\pi/2}$ (d) 0 (e) $\sqrt{\pi/2}$
3. (7 pts.) Find the tangential and normal components of the acceleration vector for the curve parametrized by \(\vec{r}(t) = (2 + t, t^2 - 2t, t^3) \) at the point \((2, 0, 0)\).

(a) \(a_N = \sqrt{5}, \ a_T = \sqrt{5} \)
(b) \(a_N = 0, \ a_T = -4 \)

(c) \(a_N = 2/\sqrt{5}, \ a_T = -4/\sqrt{5} \)
(d) \(a_N = 0, \ a_T = 0 \)

(e) \(a_N = 4, \ a_T = 0 \)

4. (7 pts.) Compute the flux of the vector field \(\vec{F} = x\vec{i} + y\vec{j} + z\vec{k} \) over the part of the cylinder \(x^2 + y^2 = 4 \) that lies between planes \(z = 0 \) and \(z = 2 \) with normal pointing away from the origin.

(a) \(16\pi \)
(b) \(8\pi/3 \)
(c) \(8\pi \)
(d) \(24\pi \)
(e) \(0 \)
5.(7 pts.) Find the absolute maximum of \(f(x, y) = x^2 + 2y^2 + 4y - 2 \) on the disk \(x^2 + y^2 \leq 4 \).

(a) 18 (b) 0 (c) 6 (d) 16 (e) 14

6.(7 pts.) Find the work done by the force field \(\mathbf{F}(x, y) = yi + y\mathbf{j} \) moving a particle along the curve \(y = \sin x \) from the point \((0, 0)\) to the point \((\pi/2, 1)\).

(a) 3/2 (b) 1 (c) 0 (d) -3/2 (e) -1
7. (7 pts.) Use the Divergence theorem to find \(\iiint_S \mathbf{F} \cdot d\mathbf{S} \) where \(\mathbf{F}(x, y, z) = (xy, \frac{3}{4}y, -zy) \) and \(S \) is the closed surface \(x^2 + y^2 + z^2 = 4 \) with the outward orientation.

(a) \(2\pi \) (b) \(16\pi \) (c) \(\pi \) (d) \(0 \) (e) \(8\pi \)

8. (7 pts.) Let \(S \) be the portion of the graph \(z = 4 - 2x^2 - 3y^2 \) that lies over the region in the \(xy \)-plane bounded by \(x = 0, y = 0, \) and \(x + y = 1 \). Determine which of the following equals \(\iint_S (x^2 + y^2 + z) \, dS \).

(a) \(\int_0^1 \int_{1-x}^{1-y} (4 - 2x^2 - 3y^2) \sqrt{1 + 4x^2 + 9y^2} \, dx \, dy \)

(b) \(\int_0^1 \int_{0}^{1-x} \int_0^{4-2x^2-3y^2} x^2 + y^2 + z \, dz \, dy \, dx \)

(c) \(\int_0^1 \int_{0}^{1-x} (4 - x^2 - 2y^2) \sqrt{1 + 16x^2 + 36y^2} \, dx \, dy \)

(d) \(\int_0^1 \int_{0}^{1-y} \int_0^{4-2x^2-3y^2} 4 - x^2 - 2y^2 \, dz \, dx \, dy \)

(e) \(\int_0^1 \int_{0}^{x+y} 4 - x^2 - 2y^2 \, dy \, dx \)
9. (7 pts.) Find the area of the triangle with vertices \((2, 0, 0), (0, 1, 0)\) and \((0, 0, 1)\).

(a) \(\frac{3}{2}\) \hspace{1cm} (b) \(\sqrt{5}\) \hspace{1cm} (c) \(\frac{1}{2}\) \hspace{1cm} (d) 1 \hspace{1cm} (e) \(\frac{\sqrt{5}}{2}\)

10. (7 pts.) Find the maximum rate of change of \(f(x, y, z) = 3 \ln(x+y) + e^{yz}\) at the point \((1, 0, 2)\).

(a) \(\sqrt{20}\) \hspace{1cm} (b) 8 \hspace{1cm} (c) 5 \hspace{1cm} (d) \(\sqrt{34}\) \hspace{1cm} (e) 20
11. (7 pts.) Let \(f(x, y, z) = x^2z^3 - y^3z^2 \) and \(\mathbf{F} = \nabla f \) be its gradient vector field. Compute \(\int_C \mathbf{F} \cdot d\mathbf{r} \), where \(C \) is the curve \(\mathbf{r}(t) = (\cos(2\pi t), \sin(2\pi t), t) \), \(0 \leq t \leq 1 \).

(a) 0 (b) \(-1\) (c) \(2\pi + 1\) (d) 1 (e) \(2\pi\)

12. (7 pts.) Let \(E \) be the part of the solid ball of radius 3, which lies below the cone \(z = \sqrt{x^2 + y^2} \) and above the plane \(z = 0 \). Suppose the density of \(E \) is given by \(\rho(x, y, z) = z^2 \). Which of the following integrals computes the mass of \(E \)?

(a) \(\int_0^{2\pi} \int_{\pi/4}^{\pi/2} \int_0^3 \rho^4 \sin \phi \cos^2 \phi \, d\rho \, d\phi \, d\theta \)
(b) \(\int_0^{\pi} \int_{\pi/2}^\pi \int_0^3 \rho^2 \sin \phi \cos \phi \, d\rho \, d\phi \, d\theta \)

(c) \(\int_0^{2\pi} \int_{\pi/4}^{\pi/2} \int_0^3 \rho^2 \cos^2 \phi \, d\rho \, d\phi \, d\theta \)
(d) \(\int_0^{2\pi} \int_0^{\pi/2} \int_0^3 \rho^4 \sin \phi \cos^2 \phi \, d\rho \, d\phi \, d\theta \)

(e) \(\int_0^{2\pi} \int_{\pi/4}^{\pi/2} \int_0^3 \rho^2 \cos^2 \phi \, d\rho \, d\phi \, d\theta \)
13. (7 pts.) Determine the length of the curve \(\mathbf{r}(t) = \langle t, 2\cos t, 2\sin t \rangle \) on the interval \(0 \leq t \leq \pi \).

(a) \(2\pi \) (b) \(\sqrt{5}\pi \) (c) \(5\pi \) (d) \(3\pi \) (e) \(9\pi \)

14. (7 pts.) Find the equation for the tangent plane to the ellipsoid
\((x - 1)^2 + 2y^2 + (z + 2)^2 = 4 \) at the point \((2, 1, -1) \).

(a) \(- (x - 2) + 2(y - 1) - 4(z + 1) = 0\) (b) \((x - 2) + 2(y - 1) + 6(z + 1) = 0\)
(c) \(4(x - 2) + 4(y - 1) - 2(z + 1) = 0\) (d) \(2(x - 2) + 4(y - 1) + 2(z + 1) = 0\)
(e) \(2(x - 2) + 4(y - 1) + 6(z + 1) = 0\)
15. (7 pts.) Let S be the surface given by the graph of $z = x^2 + y^2$ over the rectangular region $D = [0, 1] \times [0, 1]$. Let C be the boundary of S, oriented counterclockwise (when viewed from above). Use Stokes’ Theorem to evaluate $\int_C \vec{F} \cdot d\vec{r}$, where $\vec{F} = (e^{-x^2}, x + 3z, 3y)$.

(a) $\frac{2}{3}$ (b) $-\frac{2}{3}$ (c) 1 (d) 0 (e) -1

16. (7 pts.) Find the tangent line to the curve $\vec{r}(t) = (2t + 1, t^2 - 4, e^{1-t})$ at the point $(3, -3, 1)$

(a) $\langle x, y, z \rangle = (2, -6, 1)t + (3, -3, 1)$ (b) $\langle x, y, z \rangle = (2, 1, -e^{-1})t + (3, -3, 1)$
(c) $\langle x, y, z \rangle = (2, 2, -1)t + (3, -3, 1)$ (d) $\langle x, y, z \rangle = (2, 1, e^{-1})t + (3, -3, 1)$
(e) $\langle x, y, z \rangle = (2, 2, 1)t + (3, -3, 1)$
17. (7 pts.) Let R be the parallelogram enclosed by the lines $x + 3y = 0$, $x + 3y = 2$, $x + y = 1$, and $x + y = 4$. Use the transformation $u = x + 3y$, $v = x + y$ to evaluate $\iint_R \frac{x + 3y}{(x + y)^2} \, dA$. (Hint: solving for x and y you get $x = \frac{1}{2}u + \frac{3}{2}v$, $y = \frac{1}{2}u - \frac{1}{2}v$.)

(a) $\frac{3}{4}$
(b) 0
(c) $\frac{3}{2}$
(d) $-\frac{3}{4}$
(e) $-\frac{3}{2}$

18. (7 pts.) Which one of the following integrals computes the volume of the part of the solid cylinder $x^2 + y^2 \leq 1$ that lies between planes $z = 0$ and $z = 2 - y$?

(a) $\int_0^{2\pi} \int_0^1 \int_0^2 (2 - r) \, r \, dz \, dr \, d\theta$
(b) $\int_0^{2\pi} \int_0^1 \int_0^{2-r} r \, dz \, dr \, d\theta$

(c) $\int_0^{2\pi} \int_0^1 \int_0^{2-r \sin \theta} r \, dz \, dr \, d\theta$
(d) $\int_0^{2\pi} \int_0^1 \int_0^2 r \, dz \, dr \, d\theta$

(e) $\int_0^{2\pi} \int_0^1 \int_0^2 (2 - r) \, dz \, dr \, d\theta$
19. (7 pts.) Use Green's Theorem to evaluate

\[\int_C \left(-\frac{y^3}{3} + \sin(x) \right) \, dx + \left(\frac{x^3}{3} + y \right) \, dy \]

where \(C \) is the circle of radius 1 centered at \((0, 0)\) oriented counterclockwise when viewed from above.

(a) \(4\pi \) (b) \(8\pi \) (c) \(\pi \) (d) \(2\pi \) (e) \(\frac{\pi}{2} \)

20. (7 pts.) Find \(\bar{r}(1) \), the position of the particle at time \(t = 1 \), if the acceleration at time \(t \) is \(\bar{a}(t) = (2t, 0, 3t^2) \), the initial velocity is \(\bar{v}(0) = (1, -1, 0) \) and initial position is \(\bar{r}(0) = (0, 0, 1) \).

(a) \(\left\langle \frac{4}{3}, -1, \frac{5}{4} \right\rangle \) (b) \(\left\langle \frac{4}{3}, 1, \frac{5}{4} \right\rangle \) (c) \(\left\langle -\frac{2}{3}, 1, \frac{5}{4} \right\rangle \)

(d) \(\left\langle \frac{4}{3}, -1, \frac{1}{4} \right\rangle \) (e) \(\left\langle \frac{1}{3}, 0, \frac{5}{4} \right\rangle \)
21. (7 pts.) Use the second derivative test to classify critical points \((0, 0)\) and \((1, 2)\) of the function \(f(x, y) = 12x^2 + y^3 - 12xy.\)

(a) \((0, 0)\) is a local maximum and \((1, 2)\) is a local maximum.

(b) \((0, 0)\) is a saddle point and \((1, 2)\) is a local maximum.

(c) \((0, 0)\) is a local minimum and \((1, 2)\) is a local maximum.

(d) \((0, 0)\) is a saddle point and \((1, 2)\) is a local minimum.

(e) \((0, 0)\) is a local minimum and \((1, 2)\) is a local minimum.