Multiple Choice

1. $(6 \mathrm{pts})$ Let $\mathbf{a}=\langle 1,2,0\rangle, \mathbf{b}=\langle 3,1,-1\rangle$, and let $\mathbf{c}=\operatorname{proj}_{\mathbf{a}} \mathbf{b}$ be the vector projection of \mathbf{b} onto \mathbf{a}. Which one of the following vectors is orthogonal to $\mathbf{b}-\mathbf{c}$?
(a) $\langle 0,1,1\rangle$
(b) $\langle 2,1,-1\rangle$
(c) $\langle 1,2,0\rangle$
(d) $\langle 2,1,0\rangle$
(e) $\langle 1,0,1\rangle$
2. (6 pts) Find the radius of the sphere given by the equation

$$
x^{2}+y^{2}+z^{2}-6 x+4 z+7=10 .
$$

(a) 3
(b) 9
(c) $\quad-4$
(d) 2
(e) 4
3. (6 pts) A particle moves with the position function $\mathbf{r}(t)=\left\langle t^{2},-t, 2\right\rangle$. Find the normal component of acceleration.
(a) $a_{N}=\frac{2}{\sqrt{1+4 t^{2}}}$
(b) $a_{N}=4 t$
(c) $a_{N}=2$
(d) $a_{N}=\frac{4 t}{\sqrt{1+4 t^{2}}}$
(e) $a_{N}=\sqrt{1+4 t^{2}}$
4. (6 pts) Find the volume of the parallelepiped determined by the vectors $\mathbf{a}=\langle 1,2,2\rangle$, $\mathbf{b}=\langle 3,2,2\rangle$, and $\mathbf{c}=\langle 7,3,1\rangle$.
(a) -4
(b) 8
(c) 3
(d) -8
(e) 4
5. (6 pts) Where does the line with parametric equations

$$
x=-1+3 t \quad y=2-2 t \quad z=3+t
$$

intersect the plane $3 x+y-4 z=-4$?
(a) they do not intersect
(b) $(-3,-3,-2)$
(c) $(8,-4,6)$
(d) $(-10,8,0)$
(e) $(0,0,1)$
6. (6 pts$)$ Find symmetric equations for the line through the point $(1,-2,-4)$ which is orthogonal to the plane $2 x-y+3 z=18$.
(a) $\frac{x+1}{2}=\frac{y-2}{1}=\frac{z-4}{3}$
(b) $\frac{x-1}{2}=\frac{-y-2}{-1}=\frac{z+4}{3}$
(c) $\frac{x-1}{2}=\frac{y+2}{-1}=\frac{z+4}{3}$
(d) $\frac{x-1}{\sqrt{14}}=\frac{-y-2}{\sqrt{14}}=\frac{z+4}{\sqrt{14}}$
(e) $\frac{1+2 x}{\sqrt{14}}=\frac{-y-2}{\sqrt{14}}=\frac{-4+3 z}{\sqrt{14}}$
7. (6 pts) Find the position $\mathbf{r}(1)$ of a particle at time $y=1$ if it has acceleration $\mathbf{a}(t)=e^{t} \mathbf{i}-6 t \mathbf{k}$, the initial position of the particle is $\mathbf{r}(0)=\langle 1,0,-1\rangle$ and the initial velocity is $\mathbf{v}(0)=\langle 1,1,0\rangle$.
(a) $\mathbf{r}(1)=\langle 1,0,1\rangle$
(b) $\mathbf{r}(1)=\langle e, 0,0\rangle$
(c) $\quad \mathbf{r}(1)=\langle e, 1,-1\rangle$
(d) $\mathbf{r}(1)=\langle e, 1,-2\rangle$
(e) $\quad \mathbf{r}(1)=\langle 0,1,2\rangle$
8. (6 pts) Which of these is an equation of the tangent line to the curve

$$
\mathbf{r}(t)=\left\langle t^{2}+2 t+3,4 t \cos (t), 2 e^{3 t}\right\rangle
$$

at the point where $t=0$?
(a) $\langle x, y, z\rangle=\langle 3,4,2 e\rangle+t\langle 2,0,6 e\rangle$
(b) $\langle x, y, z\rangle=\langle 3,0,2\rangle+t\langle 1,2,3\rangle$
(c) $\langle x, y, z\rangle=\langle 3,0,2\rangle+t\langle 1,-2,3\rangle$
(d) $\langle x, y, z\rangle=\langle 3,4,2\rangle+t\langle 1,2,3\rangle$
(e) $\langle x, y, z\rangle=\langle 3,0,2 e\rangle+t\langle 2,4,6\rangle$
9. (6 pts) Which of the following expressions gives the length of the curve defined by $\mathbf{r}(t)=t^{2} \mathbf{i}-\mathbf{j}+\ln t \mathbf{k}$ between the points $(1,-1,0)$ and $\left(e^{2},-1,1\right)$?
(a) $\int_{1}^{e^{2}} \sqrt{4 t^{2}+1 / t^{2}} \mathrm{~d} t$
(b) $\int_{1}^{e} \sqrt{t^{2}+1+\ln ^{2} t} \mathrm{~d} t$
(c) $\int_{0}^{1} \sqrt{2 t+\ln t} \mathrm{~d} t$
(d) $\int_{1}^{e} \sqrt{2 t+\ln t} \mathrm{~d} t$
(e) $\int_{1}^{e} \sqrt{4 t^{2}+1 / t^{2}} \mathrm{~d} t$
10.(6 pts) Which one of the following functions has level curves drawn below?
(a) $\quad f(x, y)=y^{2}+x$
(b) $\quad f(x, y)=y+x^{2}$
(c) $\quad f(x, y)=y-x^{2}$
(d) $f(x, y)=y^{2}-x$
(e) $\quad f(x, y)=y^{2}-x^{2}$

You must show your work on the partial credit problems to receive credit!
11. (12 pts.) Find an equation for the line of intersection of the planes $3 x-y+z=0$ and $2 x-3 y+z=0$.
12.(12 pts.) The position function of a moving object is $\mathbf{r}(t)=t^{2} \mathbf{i}-\mathbf{j}+\ln t \mathbf{k}$.
(a) Find the unit tangent vector \mathbf{T}, the principal normal vector \mathbf{N}, and the bi-normal vector \mathbf{B} at $t=1$.
(b) Find an equation of the normal plane at $t=1$.
(c) Find an equation of the osculating plane at $t=1$.
13.(12 pts.) Find the distance from the point $(-4,1,4)$ to the plane containing the points $P(0,0,3), Q(1,1,3)$, and $R(1,0,-1)$.

Name: \qquad
Instructor: ANSWERS

Math 20550, Exam 1, Practice

September 22, 2015

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 minutes..
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 4 pages of the test.
- Each multiple choice question is 6 points, each partial credit problem is 12 points.

You will receive 4 extra points.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!				
1. (a)	(b)	($)$	(d)	(e)
2. (a)	(b)	(c)	(d)	($)$
3. ($)^{\text {(}}$	(b)	(c)	(d)	(e)
4. (a)	($)$	(c)	(d)	(e)
5. (a)	(b)	(-)	(d)	(e)
6. (a)	(b)	(-)	(d)	(e)
7. (a)	(b)	(c)	($)$	(e)
8. (a)	($)$	(c)	(d)	(e)
9. (a)	(b)	(c)	(d)	($)$
10. (a)	(b)	(c)	($)$	(e)

Please do NOT write in this box.	
Multiple Choice	$\boxed{ }$
11.	$\boxed{ }$
12.	\square
13.	$\boxed{ }$
Extra Points.	$\boxed{4}$
Total	\square

11. Clearly the origin $(0,0,0)$ is on both planes and hence on the intersection line. To get an equation of the line we also need a direction. The line is perpendicular to the normals to both the planes. The normals are $(3,-1,1)$ and $(2,-3,1)$ respectively. So the direction of the line is given by their cross product:

$$
\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
3 & -1 & 1 \\
2 & -3 & 1
\end{array}\right|=\langle 2,-1,-7\rangle
$$

So the equation of the line is:

$$
\frac{x}{2}=\frac{y}{-1}=\frac{z}{-7}
$$

12. At $t=1$ the position vector is $\mathbf{r}(1)=(1,-1,0)$.

We will need first two derivative at $t=1$.

$$
\begin{aligned}
& \mathbf{r}^{\prime}(t)=2 t \mathbf{i}+\frac{1}{t} \mathbf{k} \text { and } \mathbf{r}^{\prime}(1)=2 \mathbf{i}+\mathbf{k} \\
& \mathbf{r}^{\prime \prime}(t)=2 \mathbf{i}-\frac{1}{t^{2}} \mathbf{k} \text { and } \mathbf{r}^{\prime}(1)=2 \mathbf{i}-\mathbf{k}
\end{aligned}
$$

(a) We have $\mathbf{T}=\frac{\mathbf{r}^{\prime}}{\left|\mathbf{r}^{\prime}\right|}=\frac{1}{\sqrt{5}}(2 \mathbf{i}+\mathbf{k})$.

Recall that $\mathbf{B}=\frac{\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}}{\left|\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right|}$.
Since

$$
\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & 0 & 1 \\
2 & 0 & -1
\end{array}\right|=4 \mathbf{j}
$$

we have $\mathbf{B}=\mathbf{j}$.
We also have

$$
\mathbf{N}=\mathbf{B} \times \mathbf{T}=\mathbf{j} \times \frac{1}{\sqrt{5}}(2 \mathbf{i}+\mathbf{k})=\frac{1}{\sqrt{5}}(2 \mathbf{j} \times \mathbf{i}+\mathbf{j} \times \mathbf{k})=\frac{1}{\sqrt{5}}(\mathbf{i}-2 \mathbf{k}) .
$$

(b) Normal is plane is ortogonal to \mathbf{r}^{\prime} and its equation is

$$
2(x-1)+z=0 \text { or } 2 x+z=2
$$

(c) The osculating plane is orthogonal \mathbf{B} and its equation is

$$
y+1=0 .
$$

13.First we find an equation of the plane containing the points $P(0,0,3), Q(1,1,3)$, and $R(1,0,-1)$. The plain contains vectors $\overrightarrow{\mathbf{P Q}}=\langle 1,1,0\rangle$ and $\overrightarrow{\mathbf{P R}}=\langle 1,0,-4\rangle$, and their
crossproduct

$$
\overrightarrow{\mathbf{P Q}} \times \overrightarrow{\mathbf{P R}}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 1 & 0 \\
1 & 0 & -4
\end{array}\right|=\langle-4,4,-1\rangle
$$

is orthogonal to the plain.
Since the plain contains the point $P=(0,0,3)$ an equation of the plain is

$$
-4 x+4 y-(z-3)=0 \text { or }-4 x+4 y-z+3=0
$$

Using the distance formula we obtain thea the distance from the point $(-4,1,4)$ to the plain is

$$
D=\frac{|-4 \cdot(-4)+4 \cdot 1-4+3|}{\sqrt{4^{2}+4^{2}+1^{2}}}=\frac{19}{\sqrt{33}} .
$$

