Name:

Instructor:

Math 20550, Exam 2 March 17, 2015

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 minutes..
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 9 pages of the test.
- Each multiple choice question is 6 points, each partial credit problem is 12 points. You will receive 4 extra points.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!						
1.	(a)	(b)	(c)	(d)	(e)	
2.	(a)	(b)	(c)	(d)	(e)	
3.	(a)	(b)	(c)	(d)	(e)	
4.	(a)	(b)	(c)	(d)	(e)	
5.	(a)	(b)	(c)	(d)	(e)	
6.	(a)	(b)	(c)	(d)	(e)	
7.	(a)	(b)	(c)	(d)	(e)	
8.	(a)	(b)	(c)	(d)	(e)	
9.	(a)	(b)	(c)	(d)	(e)	
10.	(a)	(b)	(c)	(d)	(e)	

Please do NOT	write in this b	ox.
Multiple Choice		
11.		
12.		
13.		
Extra Points.	4	
Total:		

Multiple Choice

1.(6 pts) Find the absolute maximum and minimum of $f(x, y) = 4y + x^2 - 2x + 1$ on the closed triangular region with vertices (0, 0), (2, 0) and (0, 2).

- (a) maximum value = 9, minimum value = 0
- (b) maximum value = 10, minimum value = -1
- (c) maximum value = 8, minimum value = 1
- (d) maximum value = 4, minimum value = 0
- (e) maximum value = 1, minimum value = 0

2.(6 pts) Find the equation of the tangent plane to the surface $xz + \ln(2x + y) = 5$ at the point (-1, 3, -5).

- (a) -3x + y z 11 = 0 (b) 4x y + z + 12 = 0
- (c) 5x y + z + 13 = 0 (d) 3x + y z 5 = 0
- (e) -4x + y z 4 = 0

3.(6 pts) If z = f(x, y), where f is differentiable, and x = g(t), y = h(t), g(1) = 3, $h(1) = 4, g'(1) = -2, h'(1) = 5, f_x(3, 4) = 7$ and $f_y(3, 4) = 6$. Find dz/dt when t = 1.

(a) 16 (b) 23 (c) 44 (d) 32 (e) 13

4.(6 pts) Find the directional derivative of the function $f(x, y) = x^2 + y^3$ at the point (2, 1) in the direction < 1, 1 >

(a) $\frac{7}{\sqrt{2}}$

$$(b) \quad 7$$

(c)
$$\frac{3}{\sqrt{2}}$$

(d) 3

(e) None of the above

5.(6 pts) For a function f(x, y), suppose that $f_{xx} = x^2$ and $D(x, y) = f_{xx}f_{yy} - f_{xy}^2 = x^2y^2 - 2$. Which is true for the points P(1, 1) and Q(1, 2) where P and Q are critical points of f.

- (a) P is a saddle point and Q is a local min.
- (b) P is a saddle point and Q is a local max.
- (c) P is a local min and Q is a local max.
- (d) P is a local max and Q is a local min.
- (e) None of the above

6.(6 pts) What is the equation of the tangent line to the curve of intersection between the two surfaces defined by $z = x^2 + y^2$ and $x^2 + 2y^2 + z^2 = 7$ at the point (-1, 1, 2).

- (a) $\langle x, y, z \rangle = \langle -1, 1, 2 \rangle + t \langle 12, 10, -4 \rangle$
- (b) $\langle x, y, z \rangle = \langle -1, 1, 2 \rangle + t \langle -2, 2, 1 \rangle$
- (c) $\langle x, y, z \rangle = \langle -1, 1, 2 \rangle + t \langle -2, 4, 4 \rangle$
- (d) $\langle x, y, z \rangle = \langle -1, 1, 2 \rangle + t \langle 1, 2, 1 \rangle$
- (e) None of the above

7.(6 pts) Find the maximum rate of change of $f(x, y) = 3e^{xy}$ at the point (2,0) and the direction in which it occurs.

- (a) Rate of change = 6 in the direction $\langle 0, 1 \rangle$
- (b) Rate of change = 3 in the direction $\langle 1, 1 \rangle$
- (c) Rate of change = $\sqrt{3}$ in the direction $\langle 1, 0 \rangle$
- (d) Rate of change = $\sqrt{6}$ in the direction $\langle 1, -1 \rangle$
- (e) Rate of change = 36 in the direction $\langle -1, 0 \rangle$

8.(6 pts) Find absolute maximum and minimum of 3x - y - 3z subject to the constraints x + y - z = 0 and $x^2 + 2z^2 = 6$.

- (a) Max=12, Min=-12 (b) Max=15, Min=5 (c) Max= $3\sqrt{5}$, Min=0
- (d) Max=5, Min= $-3\sqrt{5}$ (e) Max=6, Min=-1

Name: _____ Instructor: _____

9.(6 pts) Evaluate the iterated integral

 $\int_0^2 \int_u^{2y} 2xy \, dx \, dy.$ (c) 4 (d) 5(a)12(b) 3 (e) 2

10.(6 pts) Which integral represents the volume of the solid below the plane x + y + z = 3and over the rectangle $[0, 2] \times [0, 1]$.

- (b) $\int_0^1 \int_0^2 3 x y \, dy dx$ (a) $\int_0^2 \int_0^1 3 - x - y \, dy dx$ (d) $\int_0^1 \int_0^2 x + y + z \, dy dx$
- (c) $\int_0^2 \int_0^1 x + y + z \, dy dx$
- (e) $\int_{0}^{2} \int_{0}^{1} 1 \, dy \, dx$

Name: ______ Instructor: ______

Partial Credit You must show your work on the partial credit problems to receive credit!

11.(12 pts) Find all critical points of $f(x, y) = x^3 - xy + y^2/2$ and classify them using the second derivative test.

Name: ______ Instructor: ______

12.(12 pts) Use Lagrange Multipliers to find extrema values of the funciton $f(x, y) = 2x^3 - y^3$ subject to the contraint $x^2 + y^2 = 5$.

Name: ______ Instructor: ______

13.(12 pts) Find the volume of the solid that lies under the graph of $f(x, y) = xe^{xy}$ and above the rectangle $R = \{(x, y) | 0 \le x \le 1, 0 \le y \le 1\}$.