Multiple Choice

1.(6 pts)Which of the following integrals computes \bar{x} for the solid bounded by x = 0, y = 0, z = 0, and 2x + 2y + z = 2 which has constant density $\rho(x, y, z) = k$, and mass equals k/3.

(a) $1/3 \int_0^1 \int_0^1 \int_0^{1-x-y} x \, dz \, dy \, dx$ (b) $3 \int_0^1 \int_0^{1-x} \int_0^{2-2x-2y} \, dx \, dy \, dz$

(c)
$$3\int_0^1 \int_0^{1-x} \int_0^{2-2x-2y} x \, dz \, dy \, dx$$
 (d) $3\int_0^1 \int_0^1 \int_0^2 x \, dx \, dy \, dx$
(e) $1/3\int_0^1 \int_0^1 \int_0^{1-x-y} \, dx \, dy \, dz$

2.(6 pts) Express the double integral $\iint_D (x+1) dA$, where D is the region in the upper half-plane (i.e. $y \ge 0$) between the circles $x^2 + y^2 = 4$ and $x^2 + y^2 = 9$, in polar coordinates.

(a) $\int_0^{2\pi} \int_2^3 (r^2 \cos \theta + r) \, dr d\theta$ (b) $\int_0^{\pi} \int_2^3 (r \cos \theta + 1) \, dr d\theta$

(c)
$$\int_{0}^{2\pi} \int_{2}^{3} (r \cos \theta + 1) dr d\theta$$
 (d) $\int_{0}^{\pi} \int_{2}^{3} (r^{2} \cos \theta + r) dr d\theta$

(e) $\int_0^{\pi} \int_4^9 (r^2 \cos \theta + r) dr d\theta$

3.(6 pts) Find the surface area of the parametric surface $\mathbf{r}(u, v) = \langle u, uv, u \rangle$ with $0 \le u \le 1, 0 \le v \le 1$.

(a)
$$\frac{1}{2}$$
 (b) $\sqrt{2}$ (c) 2 (d) 1 (e) $\frac{\sqrt{2}}{2}$

4.(6 pts) Which of the following integrals computes $\iiint_E y \, dV$ in cylindrical coordinates, where E is the solid that lies between cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$, above the xy-plane and below the plane z = x + 4?

(a)
$$\int_{0}^{2\pi} \int_{1}^{2} \int_{0}^{r\cos\theta+4} r^{2} \sin\theta \, dz \, dr \, d\theta$$
(b)
$$\int_{0}^{2\pi} \int_{1}^{2} \int_{0}^{r\cos\theta+4} r \sin\theta \, dz \, dr \, d\theta$$
(c)
$$\int_{0}^{2\pi} \int_{1}^{2} \int_{0}^{r\sin\theta} (r\cos\theta+4) \, dz \, dr \, d\theta$$
(d)
$$\int_{0}^{2\pi} \int_{1}^{2} \int_{0}^{r} r^{2} \sin\theta \, dz \, dr \, d\theta$$

(e)
$$\int_0^{2\pi} \int_1^2 \int_0^r r \sin\theta \, dz \, dr \, d\theta$$

$$\int_0^{2\pi} \int_1^2 \int_0^r r^2 \sin\theta \, dz dr d\theta$$

5.(6 pts) Evaluate $\iiint_E (x^2 + y^2 + z^2)^{3/2} dV$, where E is the solid hemisphere enclosed by $x^2 + y^2 + z^2 = 1$ and above the plane z = 0.

(a) 0 (b)
$$\frac{\pi}{3}$$
 (c) $\frac{1}{3}$ (d) $\frac{2\pi}{3}$ (e) π

6.(6 pts) Evaluate the line integral $\int_C (x + y + z) \, ds$ along the curve *C* given by $\mathbf{r}(t) = \langle \sin t, \cos t, t \rangle, \ 0 \le t \le \pi.$

- (b) $\frac{1}{2}\pi^2$ (c) $\sqrt{2}(2+\frac{1}{2}\pi^2)$ (a) $\sqrt{2}\pi^2$
- (d) $\frac{\sqrt{2}}{2}\pi^2$ (e) $2 + \frac{1}{2}\pi^2$

7.(6 pts) Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y) = xy\mathbf{i} + e^x\mathbf{j}$ and C is the line segment from (2,0) to (4,0).

(c) -2 (d) 4 (e) -40 (b) 2 (a)

8.(6 pts) Use Fundamental Theorem of Line Integrals to compute $\int_C \nabla f \cdot d\mathbf{r}$ where $f(x, y, z) = xy^2 + ye^{5z}$ and C is the curve $\mathbf{r}(t) = \langle e^{3t}, \sqrt{1+3t^4}, 2\sin(\pi t) \rangle, 0 \le t \le 1$.

(c) $2e^3$ (d) 0 (a) $4e^3$ (b) $4e^5$ (e) $2e^3 + 2$ **9.**(6 pts)Evaluate $\oint_C (y^3 + x^2) dx + (3y^2x + x) dy$ where C is the positively oriented boundary of the triangle with vertices (0, 0), (0, 4), and (2, 2)

(a) -2 (b) 2 (c) -4 (d) 0 (e) 4

10.(6 pts)Find an equation for the tangent plane to the surface given by $\mathbf{r}(u, v) = \langle u, uv, u \rangle$ at the point (1, 0, 1).

(a) x + z = 0(b) -x + z = 0(c) x + y + z = 0(d) y = 1(e) x + z = 2

Partial Credit

You must show your work on the partial credit problems to receive credit!

11.(12 pts.) (a) Find the Jacobian of the transformation

 $x = u^2 - v^2, \qquad y = uv.$

(b)(Note this part is not related to part (a)) Use the transformation $x = u + \frac{v}{2}$, $y = \frac{v}{2}$ to compute $\iint_D 2dA$ where D is the region bounded by $x^2 - 2xy + 5y^2 = 1$.

12.(12 pts.) For the integral $\int_0^1 \int_{4y}^4 e^{x^2} dx dy$

- (a) Sketch the region of integration.
- (b) Reverse the order of integration.
- (c) Evaluate the integral .

13.(12 pts.) Suppose the vector field $F = y\mathbf{i} + (x+z)\mathbf{j} + (y+2z)\mathbf{k}$ is conservative. Find a potential function of F.

Name: _____

Instructor: <u>ANSWERS</u>

Math 20550. Exam 3 April 21, 2015

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 minutes..
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 5 pages of the test.
- Each multiple choice question is 6 points, each partial credit problem is 12 points. You will receive 4 extra points.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!						
1.	(a)	(b)	(ullet)	(d)	(e)	
2.	(a)	(b)	(c)	(ullet)	(e)	
3.	(a)	(b)	(c)	(d)	(ullet)	
4.	(ullet)	(b)	(c)	(d)	(e)	
5.	(a)	(ullet)	(c)	(d)	(e)	
6.	(a)	(b)	(ullet)	(d)	(e)	
7.	(ullet)	(b)	(c)	(d)	(e)	
8.	(ullet)	(b)	(c)	(d)	(e)	
9.	(a)	(b)	(c)	(d)	(ullet)	
10.	(a)	(•)	(c)	(d)	(e)	

Please do NOT	write in this box.
Multiple Choice	
11.	
12.	
13.	
Extra Points.	4
Total:	

11.(a)

$$\frac{\partial(x,y)}{\partial(u,v)} = \left| \begin{array}{cc} 2u & -2v \\ v & u \end{array} \right| = 2u^2 + 2v^2$$

(b) First we compute the Jacobian

$$\frac{\partial(x,y)}{\partial(u,v)} = \left| \begin{array}{cc} 1 & 1/2 \\ 0 & 1/2 \end{array} \right| = 1/2$$

Then we see that our region D bounded by $x^2 - 2xy + 5y^2 = 1$ corresponds to the region S bounded by $u^2 + v^2 = 1$ under this transformation.

So our integral becomes

$$\iint_D 2dA = \iint_S 2(1/2) \, dA = \pi$$

12.(a) The limits of integration tell us that our region is bounded by y = 0, y = 1, x = 4y, and x = 4. This corresponds to the following picture

(b)
$$\int_{0}^{1} \int_{4y}^{4} e^{x^{2}} dx dy = \int_{0}^{4} \int_{0}^{x/4} e^{x^{2}} dy dx$$

(c) $\int_{0}^{4} \int_{0}^{x/4} e^{x^{2}} dy dx = \int_{0}^{4} y e^{x^{2}} |_{0}^{x/4} dx = \frac{1}{4} \int_{0}^{4} x e^{x^{2}} dx = \frac{1}{8} e^{x^{2}} |_{0}^{4} = \frac{1}{8} (e^{16} - 1)$
13. First let's assume $f_{x} = y$, then

$$f = \int y \, dx = xy + c(y, z)$$

Now we want to use our candidate for f that we have found so far, to see if we can figure out the function c(y, z) using the fact that we'd like $f_y = x + z$. We compute $f_y = x + c_y(y, z)$ using the f we found in the first step. Comparing $x + c_y(y, z)$ to x + zwe see that $c_y(y,z) = z$. So integrating we can find

$$c(y,z) = \int z \, dy = yz + d(z).$$

Now our candidate for f is

$$f = xy + yz + d(z).$$

To find d(z) we compare this what we'd like to have for f_z which is $f_z = y + 2z$. Differentiating our candidate f with respect to z we get $f_z = y + d_z(z)$, and comparing to y + 2z we see that $d_z(z) = 2z$. So to find d(z) we integrate to get

$$d(z) = \int 2z \, dz = z^2 + a$$

where a can be any constant. For simplicity we choose a to be 0.

The final result is

$$f = xy + yz + z^2.$$