Multiple Choice

1. (6 pts) Which of the following integrals computes \bar{x} for the solid bounded by $x=0$, $y=0, z=0$, and $2 x+2 y+z=2$ which has constant density $\rho(x, y, z)=k$, and mass equals $k / 3$.
(a) $1 / 3 \int_{0}^{1} \int_{0}^{1} \int_{0}^{1-x-y} x d z d y d x$
(b) $3 \int_{0}^{1} \int_{0}^{1-x} \int_{0}^{2-2 x-2 y} d x d y d z$
(c) $3 \int_{0}^{1} \int_{0}^{1-x} \int_{0}^{2-2 x-2 y} x d z d y d x$
(d) $3 \int_{0}^{1} \int_{0}^{1} \int_{0}^{2} x d x d y d x$
(e) $1 / 3 \int_{0}^{1} \int_{0}^{1} \int_{0}^{1-x-y} d x d y d z$
2. (6 pts) Express the double integral $\iint_{D}(x+1) d A$, where D is the region in the upper half-plane (i.e. $y \geq 0$) between the circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=9$, in polar coordinates.
(a) $\int_{0}^{2 \pi} \int_{2}^{3}\left(r^{2} \cos \theta+r\right) d r d \theta$
(b) $\int_{0}^{\pi} \int_{2}^{3}(r \cos \theta+1) d r d \theta$
(c) $\int_{0}^{2 \pi} \int_{2}^{3}(r \cos \theta+1) d r d \theta$
(d) $\int_{0}^{\pi} \int_{2}^{3}\left(r^{2} \cos \theta+r\right) d r d \theta$
(e) $\int_{0}^{\pi} \int_{4}^{9}\left(r^{2} \cos \theta+r\right) d r d \theta$
3. (6 pts) Find the surface area of the parametric surface $\mathbf{r}(u, v)=\langle u, u v, u\rangle$ with $0 \leq u \leq 1,0 \leq v \leq 1$.
(a) $\frac{1}{2}$
(b) $\sqrt{2}$
(c) 2
(d) 1
(e) $\frac{\sqrt{2}}{2}$
4. (6 pts) Which of the following integrals computes $\iiint_{E} y d V$ in cylindrical coordinates, where E is the solid that lies between cylinders $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$, above the $x y$-plane and below the plane $z=x+4$?
(a) $\int_{0}^{2 \pi} \int_{1}^{2} \int_{0}^{r \cos \theta+4} r^{2} \sin \theta d z d r d \theta$
(b) $\int_{0}^{2 \pi} \int_{1}^{2} \int_{0}^{r \cos \theta+4} r \sin \theta d z d r d \theta$
(c) $\int_{0}^{2 \pi} \int_{1}^{2} \int_{0}^{r \sin \theta}(r \cos \theta+4) d z d r d \theta$
(d) $\int_{0}^{2 \pi} \int_{1}^{2} \int_{0}^{r} r^{2} \sin \theta d z d r d \theta$
(e) $\int_{0}^{2 \pi} \int_{1}^{2} \int_{0}^{r} r \sin \theta d z d r d \theta$
5. (6 pts) Evaluate $\iiint_{E}\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2} d V$, where E is the solid hemisphere enclosed by $x^{2}+y^{2}+z^{2}=1$ and above the plane $z=0$.
(a) 0
(b) $\frac{\pi}{3}$
(c) $\frac{1}{3}$
(d) $\frac{2 \pi}{3}$
(e) π
6. (6 pts) Evaluate the line integral $\int_{C}(x+y+z) d s$ along the curve C given by $\mathbf{r}(t)=\langle\sin t, \cos t, t\rangle, 0 \leq t \leq \pi$.
(a) $\sqrt{2} \pi^{2}$
(b) $\frac{1}{2} \pi^{2}$
(c) $\sqrt{2}\left(2+\frac{1}{2} \pi^{2}\right)$
(d) $\frac{\sqrt{2}}{2} \pi^{2}$
(e) $2+\frac{1}{2} \pi^{2}$
7. (6 pts) Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y)=x y \mathbf{i}+e^{x} \mathbf{j}$ and C is the line segment from $(2,0)$ to $(4,0)$.
(a) 0
(b) 2
(c) -2
(d) 4
(e) -4
8. $(6 \mathrm{pts})$ Use Fundamental Theorem of Line Integrals to compute $\int_{C} \nabla f \cdot d \mathbf{r}$ where $f(x, y, z)=x y^{2}+y e^{5 z}$ and C is the curve $\mathbf{r}(t)=\left\langle e^{3 t}, \sqrt{1+3 t^{4}}, 2 \sin (\pi t)\right\rangle, 0 \leq t \leq 1$.
(a) $4 e^{3}$
(b) $4 e^{5}$
(c) $2 e^{3}$
(d) 0
(e) $2 e^{3}+2$
9. (6 pts) Evaluate $\oint_{C}\left(y^{3}+x^{2}\right) d x+\left(3 y^{2} x+x\right) d y$ where C is the positively oriented boundary of the triangle with vertices $(0,0),(0,4)$, and $(2,2)$
(a) -2
(b) 2
(c) -4
(d) 0
(e) 4
10. (6 pts)Find an equation for the tangent plane to the surface given by $\mathbf{r}(u, v)=\langle u, u v, u\rangle$ at the point $(1,0,1)$.
(a) $x+z=0$
(b) $-x+z=0$
(c) $x+y+z=0$
(d) $y=1$
(e) $x+z=2$

Partial Credit

You must show your work on the partial credit problems to receive credit!
11.(12 pts.) (a) Find the Jacobian of the transformation

$$
x=u^{2}-v^{2}, \quad y=u v
$$

(b)(Note this part is not related to part (a)) Use the transformation $x=u+\frac{v}{2}, y=\frac{v}{2}$ to compute $\iint_{D} 2 d A$ where D is the region bounded by $x^{2}-2 x y+5 y^{2}=1$.
12. (12 pts.) For the integral $\int_{0}^{1} \int_{4 y}^{4} e^{x^{2}} d x d y$
(a) Sketch the region of integration.
(b) Reverse the order of integration.
(c) Evaluate the integral .
13. (12 pts.) Suppose the vector field $F=y \mathbf{i}+(x+z) \mathbf{j}+(y+2 z) \mathbf{k}$ is conservative. Find a potential function of F.

Name: \qquad
Instructor: ANSWERS
Math 20550. Exam 3
April 21, 2015

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 minutes..
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 5 pages of the test.
- Each multiple choice question is 6 points, each partial credit problem is 12 points.

You will receive 4 extra points.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!				
1. (a)	(b)	(${ }^{\text {) }}$	(d)	(e)
2. (a)	(b)	(c)	($)$	(e)
3. (a)	(b)	(c)	(d)	($)$
4. ($)$	(b)	(c)	(d)	(e)
5. (a)	($)$	(c)	(d)	(e)
6. (a)	(b)	(${ }^{\text {) }}$	(d)	(e)
7. (•)	(b)	(c)	(d)	(e)
8. ()	(b)	(c)	(d)	(e)
9. (a)	(b)	(c)	(d)	($)$
10. (a)	($)$	(c)	(d)	(e)

Please do NOT write in this box.	
Multiple Choice	$\boxed{ }$
11.	$\boxed{ }$
12.	\square
13.	\square
Extra Points.	$\boxed{4}$
Total:	\square

11.(a)

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{cc}
2 u & -2 v \\
v & u
\end{array}\right|=2 u^{2}+2 v^{2}
$$

(b) First we compute the Jacobian

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
1 & 1 / 2 \\
0 & 1 / 2
\end{array}\right|=1 / 2
$$

Then we see that our region D bounded by $x^{2}-2 x y+5 y^{2}=1$ corresponds to the region S bounded by $u^{2}+v^{2}=1$ under this transformation.

So our integral becomes

$$
\iint_{D} 2 d A=\iint_{S} 2(1 / 2) d A=\pi
$$

12.(a) The limits of integration tell us that our region is bounded by $y=0, y=1$, $x=4 y$, and $x=4$. This corresponds to the following picture

(b) $\int_{0}^{1} \int_{4 y}^{4} e^{x^{2}} d x d y=\int_{0}^{4} \int_{0}^{x / 4} e^{x^{2}} d y d x$
(c) $\int_{0}^{4} \int_{0}^{x / 4} e^{x^{2}} d y d x=\left.\int_{0}^{4} y e^{x^{2}}\right|_{0} ^{x / 4} d x=\frac{1}{4} \int_{0}^{4} x e^{x^{2}} d x=\left.\frac{1}{8} e^{x^{2}}\right|_{0} ^{4}=\frac{1}{8}\left(e^{16}-1\right)$
13.First let's assume $f_{x}=y$, then

$$
f=\int y d x=x y+c(y, z)
$$

Now we want to use our candidate for f that we have found so far, to see if we can figure out the function $c(y, z)$ using the fact that we'd like $f_{y}=x+z$. We compute $f_{y}=x+c_{y}(y, z)$ using the f we found in the first step. Comparing $x+c_{y}(y, z)$ to $x+z$ we see that $c_{y}(y, z)=z$. So integrating we can find

$$
c(y, z)=\int z d y=y z+d(z)
$$

Now our candidate for f is

$$
f=x y+y z+d(z)
$$

To find $d(z)$ we compare this what we'd like to have for f_{z} which is $f_{z}=y+2 z$. Differentiating our candidate f with respect to z we get $f_{z}=y+d_{z}(z)$, and comparing to $y+2 z$ we see that $d_{z}(z)=2 z$. So to find $d(z)$ we integrate to get

$$
d(z)=\int 2 z d z=z^{2}+a
$$

where a can be any constant. For simplicity we choose a to be 0 .
The final result is

$$
f=x y+y z+z^{2} .
$$

