Worksheet 7, Math 10560

1. Find the vector given by the projection of $v=\langle 2,1,5\rangle$ onto $a=\langle 1,-1,2\rangle$. The formula is given by

$$
\frac{v \cdot a}{|a|^{2}} a
$$

Plugging in, we see that

$$
|a|^{2}=1+1+4=6
$$

and

$$
v \cdot a=2-1+10=11
$$

Thus, the vector projection is

$$
\frac{11}{6}\langle 1,-1,2\rangle
$$

2. Does the following equation describe a sphere? If so, what is the orgin and the radius?

$$
2 x^{2}+2 y^{2}+2 z^{2}=8 x-24 z+1
$$

We need to bring the equation into the form

$$
(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=r^{2}
$$

We begin by completing the square on the left hand side, which gives

$$
2\left(x^{2}-4 x+4-4\right)+2 y^{2}+2\left(z^{2}+12 z+36-36\right)=1
$$

which gives

$$
2(x-2)^{2}+2 y^{2}+2(z+6)^{2}=1+8+72=81
$$

and hence

$$
(x-2)^{2}+y^{2}+(z-6)^{2}=81 / 2
$$

Thus the radius is $9 / \sqrt{2}$ and the center is $(2,0,-6)$.
3. Determine the unit vector that has the same direction as $v=\langle 2,4,-1\rangle$.

Being a unit vector means having length 1 . So we need to multiply v by a positive real number so that it's length becomes 1. Indeed, $\frac{1}{|v|} v$ will do the job, since $|v| \neq 0$ and

$$
\left|\frac{1}{|v|}\right| v\left|\left|=\frac{1}{|v|}\right| v\right|=1 .
$$

The length of v is

$$
|v|=\sqrt{4+16+1}=\sqrt{21}
$$

so the unit vector pointing in the same direction as v is

$$
\frac{1}{\sqrt{21}}\langle 2,4,-1\rangle
$$

4. Find the area of the parallelpiped given by the vectors $v=\langle 1,1,1\rangle, w=\langle 2,1,0\rangle$ and $u=\langle 0,2,3\rangle$.

The volume of the parallellpiped is given by the value

$$
|v \cdot(w \times u)|
$$

This amounts to computing the determinant

$$
\left|\begin{array}{lll}
1 & 1 & 1 \\
2 & 1 & 0 \\
0 & 2 & 3
\end{array}\right|=\left|\begin{array}{ll}
1 & 0 \\
2 & 3
\end{array}\right|-\left|\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right|+\left|\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right|=3-6+4=1
$$

5. Let L be the line that contains the points $P(4,2,-1)$ and $Q(-2,5,3)$. Does this line intersect the $y z$-plane? If so where?

A line is determined by a direction (i.e. a vector) and a point on that line. In this case the line L needs to pass through P and Q, so the direction should be given by the vector

$$
\overrightarrow{P Q}=\langle-6,3,4\rangle
$$

So a parametric equation for the line L is then given by

$$
P+t v=(4,2,-1)+t(-6,3,4)=(4-6 t, 2+3 t, 4 t-1)
$$

If this line is to pass through the $y z$-plane, then its x-component must be 0 ,

$$
4-6 t=0
$$

which means

$$
t=2 / 3
$$

Plugging this in shows that the line L intersects the $y z$-plane at

$$
(0,4,5 / 3)
$$

6. Let v be a vector starting at the point $P(1,3,2)$ and such that

$$
\begin{aligned}
& v \cdot \mathbf{i}=2 \\
& v \cdot \mathbf{j}=1 \\
& v \cdot \mathbf{k}=4
\end{aligned}
$$

Write down v in terms of its components. What is the terminal point of the vector v ?

If a vector $w=\langle x, y, z\rangle$, then

$$
\begin{gathered}
w \cdot \mathbf{i}=x \\
w \cdot \mathbf{j}=y \\
w \cdot \mathbf{k}=z
\end{gathered}
$$

so in particular

$$
v=\langle 2,1,4\rangle
$$

Let Q denote the terminal point of v. Since we have

$$
\overrightarrow{O P}+v=\overrightarrow{O Q}
$$

we see that Q is given by

$$
(1,3,2)+(2,1,4)=(3,4,6)
$$

