$\qquad$

## Tutorial Worksheet 2

Show all your work.

1. Let $\ell$ be the intersection of the planes given by equations $2 x-4 y+z=0$ and $3 x-y-$ $2 z+9=0$. Find an equation for $\ell$ in the form $\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v}$.
2. A point moves in space in such a way that at time $t$ its position is given by the vectorvalued function $\mathbf{r}(t)=\left\langle t^{2}+t+1,-\frac{7}{2} t,-t+4\right\rangle$. At what time(s) does the point hit the plane $x+2 y+z=-5$ ?
3. Determine the speed at $t=2$ of an object whose position function is $\mathbf{r}(t)=\left\langle t^{2}+1, t^{3}, t^{2}-1\right\rangle$.
4. Find an equation of the plane perpendicular to the line $x=2016, y=1-7 t, z=89+8 t$ passing through the point $(1,1,1)$.
5. The initial position and velocity of an object moving with acceleration $\mathbf{a}=\mathbf{i}+2 \mathbf{j}+6$ t $\mathbf{k}$ are $\mathbf{r}(0)=\mathbf{i}-2 \mathbf{j}+3 \mathbf{k}$ and $\mathbf{v}(0)=\mathbf{j}-\mathbf{k}$. Find its position at time $t$.
6. Find the distance from the point $(2,-2,3)$ to the plane $6 x+4 y-3 z=2$.
7. Find the acute angle of the intersection of the two curves $\mathbf{a}(u)=\langle 1-u, u+2,-3 u\rangle$ and $\mathbf{b}(v)=\left\langle v, 2 v, v^{2}-v\right\rangle$.
